题目内容
已知函数f(x)=
ax2-2x+2+lnx,a∈R.
(1)当a=0时,求f(x)的单调增区间;
(2)若f(x)在(1,﹢∞)上只有一个极值点,求实数a的取值范围.
| 1 |
| 2 |
(1)当a=0时,求f(x)的单调增区间;
(2)若f(x)在(1,﹢∞)上只有一个极值点,求实数a的取值范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:计算题,导数的综合应用
分析:(1)当a=0时,f(x)=-2x+2+lnx,则令f′(x)=
-2=
>0,由此能求出f(x)的单调增区间.
(2)令f′(x)=ax-2+
=
=0,f(x)在(1,+∞)上只有一个极值点,故f′(x)=0在(1,+∞)上只有一个根且不是重根.令g(x)=ax2-2x+1,x∈(1,+∞).进行分类讨论能求出实数a的取值范围.
| 1 |
| x |
| 1-2x |
| x |
(2)令f′(x)=ax-2+
| 1 |
| x |
| ax2-2x+1 |
| x |
解答:
解:(1)当a=0时,f(x)=-2x+2+lnx,
令f′(x)=
-2=
>0,
解得0<x<
.
∴f(x)的单调增区间是(0,
).
(2)∵令f′(x)=ax-2+
=
=0,
f(x)在(1,+∞)上只有一个极值点,
∴f′(x)=0在(1,+∞)上只有一个根且不是重根.
令g(x)=ax2-2x+1,x∈(1,+∞).
①当a=0时,g(x)=-2x+1,不在(1,+∞)上有一个根,舍去.
②当a>0时,g(x)=ax2-2x+1,在(1,+∞)上只有一个根,且不是重根,
∴g(1)<0,∴0<a<1;
③当a<0时,g(x)=ax2-2x+1,在(1,+∞)上只有一个根,且不是重根,
∴g(1)>0,∴a>1,矛盾.
综上所述,实数a的取值值范围是:0<a<1.
令f′(x)=
| 1 |
| x |
| 1-2x |
| x |
解得0<x<
| 1 |
| 2 |
∴f(x)的单调增区间是(0,
| 1 |
| 2 |
(2)∵令f′(x)=ax-2+
| 1 |
| x |
| ax2-2x+1 |
| x |
f(x)在(1,+∞)上只有一个极值点,
∴f′(x)=0在(1,+∞)上只有一个根且不是重根.
令g(x)=ax2-2x+1,x∈(1,+∞).
①当a=0时,g(x)=-2x+1,不在(1,+∞)上有一个根,舍去.
②当a>0时,g(x)=ax2-2x+1,在(1,+∞)上只有一个根,且不是重根,
∴g(1)<0,∴0<a<1;
③当a<0时,g(x)=ax2-2x+1,在(1,+∞)上只有一个根,且不是重根,
∴g(1)>0,∴a>1,矛盾.
综上所述,实数a的取值值范围是:0<a<1.
点评:本题考查利用导数求函数最值的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目