题目内容
设数列{an}的前n项和为Sn,且Sn=n2+n.
(1)求数列{an}的通项公式an;
(2)令bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式an;
(2)令bn=
| 1 |
| (n+1)an |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)根据“当n=1时,a1=S1,当n≥2时,an=Sn-Sn-1”,求出数列{an}的通项公式an;
(2)由(1)和条件求出bn,并进行裂项后代入Tn,相消后求出结果.
(2)由(1)和条件求出bn,并进行裂项后代入Tn,相消后求出结果.
解答:
解:(1)当n=1时,a1=S1=2,
当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,
显然n=1是也满足,所以{an}的通项公式an=2n;
(2)由(1)知an=2n,故bn=
=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)=
(1-
)=
.
当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,
显然n=1是也满足,所以{an}的通项公式an=2n;
(2)由(1)知an=2n,故bn=
| 1 |
| (n+1)an |
| 1 |
| (n+1)(2n) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| (n+1) |
∴Tn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
| n |
| 2n+2 |
点评:本题考查“当n=1时,a1=S1,当n≥2时,an=Sn-Sn-1”的应用,以及裂项相消法求数列的和,这是常考的题型.
练习册系列答案
相关题目