题目内容

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0,c为半焦距)的左焦点为F,右顶点为A,抛物线y2=
15
8
(a+c)x于椭圆交于B,C两点,若四边形ABFC是平行四边形,则椭圆的离心率是(  )
A、
1
2
B、2
C、
3
2
D、
3
4
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由椭圆方程求出F和A的坐标,由对称性设出B、C的坐标,根据平行四边形的性质求出横坐标,代入抛物线方程求出B的纵坐标,将点B的坐标代入椭圆方程,化简整理得到关于椭圆离心率e的方程,即可得到该椭圆的离心率.
解答: 解:由题意得,椭圆
x2
a2
+
y2
b2
=1(a>b>0,c为半焦距)的左焦点为F,右顶点为A,
则A(a,0),F(-c,0),
∵抛物线y2=
15
8
(a+c)x于椭圆交于B,C两点,
∴B、C两点关于x轴对称,可设B(m,n),C(m,-n)
∵四边形ABFC是平行四边形,∴2m=a-c,则m=
1
2
(a-c)

将B(m,n)代入抛物线方程得,n2=
15
8
(a+c)m=
15
16
(a+c)(a-c)=
15
16
(a2-c2),
n2=
15
16
b2
,则不妨设B(
1
2
(a-c)
15
4
b
),再代入椭圆方程得,
1
4
(a-c)
2
a2
+
15b2
16b2
=1,
化简得
1
4
(a-c)
2
a2
=
1
16
,即4e2-8e+3=0,解得e=
1
2
3
2
1(舍去),
故选:A.
点评:本题考查椭圆、抛物线的标准方程,以及它们的简单几何性质,平行四边形的性质,主要考查了椭圆的离心率e,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网