题目内容
10.命题p:直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0互为平行的充要条件是a=-2;命题q:若平面α内存在不共线的三点到平面β的距离相等,则α∥β.对以上两个命题,下列结论正确的是( )| A. | 命题“p且q”为真 | B. | 命题“p或¬q”为假 | C. | 命题“¬p且q”为真 | D. | 命题“p或q”为假 |
分析 对于命题p:对a分类讨论,利用两条直线相互平行的充要条件即可得出.对于命题q:若平面α内存在不共线的三点到平面β的距离相等,可得α∥β或相交,即可判断出真假.
解答 解:命题p:a=-1时,两条直线不平行;a≠-1时,两条直线方程分别化为:y=-$\frac{a}{2}$x+$\frac{1}{2}$,y=-$\frac{1}{a+1}$x-$\frac{4}{a+1}$,由于两条直线相互平行,
∴$-\frac{a}{2}=-\frac{1}{a+1}$,$\frac{1}{2}≠-$$\frac{1}{a+1}$,解得a=-2或1.
∴直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0互为平行的充要条件是a=-2或1,因此p是假命题.
命题q:若平面α内存在不共线的三点到平面β的距离相等,则α∥β或相交,因此是假命题.
对以上两个命题,下列结论正确的是命题“p或q”为假.
故选:D.
点评 本题考查了两条直线相互平行的充要条件、平面的位置关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
20.已知集合A={x|x>1},B={x|x2-2x<0},则(∁RA)∩B=( )
| A. | (0,1) | B. | [0,1] | C. | (0,1] | D. | [0,1) |
1.直线m:x+(a2-1)y+1=0,直线n:x+(2-2a)y-1=0,则“a=-3”是“直线m、n关于原点对称”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
18.将函数f(x)=sin2x的图象向左平移$\frac{π}{6}$个单位后与函数g(x)的图象重合,则函数g(x)为( )
| A. | $sin(2x-\frac{π}{6})$ | B. | $sin(2x+\frac{π}{6})$ | C. | $sin(2x-\frac{π}{3})$ | D. | $sin(2x+\frac{π}{3})$ |
5.复数z满足z(1-i)=|1+i|,则复数z的共轭复数在复平面内的对应点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
15.在各项均为正数的等比数列{an}中,a5a6=4,则数列{log2an}的前10项和等于( )
| A. | 20 | B. | 10 | C. | 5 | D. | 2+log25 |
2.定义A°B={x|x∈A或x∈B,但x∉A∩B}.已知M={y|y=2|x|},N={x|$\frac{3}{2-x}$≤2},则M°N=( )
| A. | [0,1)∪(2,+∞) | B. | (-∞,$\frac{1}{2}$]∪[1,2] | C. | [$\frac{1}{2}$,1)∪(2,+∞) | D. | [1,2) |