题目内容

19.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到四棱锥A′-BCDE,已知A′H⊥CD,垂足为H.
(Ⅰ)求证:平面A′HB⊥平面BCDE;
(Ⅱ)求三棱锥B-A′DE的最大体积.

分析 (1)由DE⊥CD,DE⊥A′D可知DE⊥平面A′CD,故而A′H⊥DE,又A′H⊥CD,故A′H⊥平面BCDE,于是平面A′HB⊥平面BCDE;
(2)当A′D⊥平面BCDE时,棱锥A′-BDE的高取得最大值a,且底面BDE不变,从而求出棱锥的最大体积.

解答 证明:(1∵D,E是AC,AB的中点,∠ACB=90°,
∴DE⊥CD,DE⊥A′D,又CD?平面A′CD,A′D?平面A′CD,CD∩A′D=D,
∴DE⊥平面A′CD.∵A′H?平面A′CD,
∴A′H⊥DE,又A′H⊥CD,CD∩DE=D,CD?平面BCDE,DE?平面BCDE,
∴A′H⊥平面BCDE,∵A′H?平面A′HB,
∴平面A′HB⊥平面BCDE.
(2)∵AC=BC=2a,∠ACB=90°,DE是△ABC的中位线,
∴A′D=DE=a,S△BDE=$\frac{1}{2}×a×a$=$\frac{{a}^{2}}{2}$.
当A′D⊥平面BCDE时,四棱锥A′-BCDE的高取得最大值A′D=a,
∴三棱锥B-A′DE的最大体积VB-A′DE=VA′-BDE=$\frac{1}{3}$S△BDE•A′D=$\frac{1}{3}×\frac{{a}^{2}}{2}×a$=$\frac{{a}^{3}}{6}$.

点评 本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网