题目内容
19.(Ⅰ)求证:平面A′HB⊥平面BCDE;
(Ⅱ)求三棱锥B-A′DE的最大体积.
分析 (1)由DE⊥CD,DE⊥A′D可知DE⊥平面A′CD,故而A′H⊥DE,又A′H⊥CD,故A′H⊥平面BCDE,于是平面A′HB⊥平面BCDE;
(2)当A′D⊥平面BCDE时,棱锥A′-BDE的高取得最大值a,且底面BDE不变,从而求出棱锥的最大体积.
解答
证明:(1∵D,E是AC,AB的中点,∠ACB=90°,
∴DE⊥CD,DE⊥A′D,又CD?平面A′CD,A′D?平面A′CD,CD∩A′D=D,
∴DE⊥平面A′CD.∵A′H?平面A′CD,
∴A′H⊥DE,又A′H⊥CD,CD∩DE=D,CD?平面BCDE,DE?平面BCDE,
∴A′H⊥平面BCDE,∵A′H?平面A′HB,
∴平面A′HB⊥平面BCDE.
(2)∵AC=BC=2a,∠ACB=90°,DE是△ABC的中位线,
∴A′D=DE=a,S△BDE=$\frac{1}{2}×a×a$=$\frac{{a}^{2}}{2}$.
当A′D⊥平面BCDE时,四棱锥A′-BCDE的高取得最大值A′D=a,
∴三棱锥B-A′DE的最大体积VB-A′DE=VA′-BDE=$\frac{1}{3}$S△BDE•A′D=$\frac{1}{3}×\frac{{a}^{2}}{2}×a$=$\frac{{a}^{3}}{6}$.
点评 本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.
练习册系列答案
相关题目
9.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
(Ⅰ)求y关于x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额
附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.
| x | 2 | 5 | 8 | 9 | 11 |
| y | 12 | 10 | 8 | 8 | 7 |
(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额
附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.
10.下列命题中,真命题是( )
| A. | “a≤b”是“a+c≤b+c”的必要不充分条件 | |
| B. | 如果空间两条直线不相交,则这两条直线平行 | |
| C. | 设命题p:?x∈R,x2+1>0,则¬p为?x0∈R,x02+1<0 | |
| D. | “若α=$\frac{π}{4}$,则tanα=1”的逆否命题为“若tanα≠1,则α≠$\frac{π}{4}$” |
4.$\underset{lim}{n→∞}$$\sum_{i=1}^{n}$($\frac{1}{n}$sin$\frac{i}{n}$)=( )
| A. | 1-cos1 | B. | 1-sin1 | C. | $\frac{π}{2}$ | D. | -$\frac{π}{2}$ |
8.不等式x2-3x+1≤0的解集是( )
| A. | {x|x≥$\frac{3-\sqrt{5}}{2}$} | B. | {x|x≤$\frac{3+\sqrt{5}}{2}$} | C. | {x|$\frac{3-\sqrt{5}}{2}$≤x≤$\frac{3+\sqrt{5}}{2}$} | D. | ∅ |