题目内容

19.如图,在矩形ABCD中,|AB|=4,|AD|=2,O为AB中点,P,Q分别是AD和CD的中点,且直线AQ与BP的交点在椭圆E:$\frac{x^2}{a^2}$+y2=1(a>0)上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设R为椭圆E的右顶点,T为椭圆E的上顶点,M为椭圆E第一象限部分上一点,求梯形ORMT面积的最大值.

分析 (Ⅰ)由题可知,$\frac{y_1}{2}=\frac{{{x_1}+2}}{4},\frac{y}{x+2}=\frac{2}{{{x_1}+2}},\frac{y}{x-2}=\frac{y_1}{-4}$,整理即可求得椭圆E的方程;
(Ⅱ)由${y_0}=\frac{1}{2}\sqrt{4-x_0^2}$,则四边形面积$S=\frac{1}{2}×2×{y_0}+\frac{1}{2}×1×{x_0}=\frac{{\sqrt{4-x_0^2}}}{2}+\frac{x_0}{2}≤\sqrt{\frac{4-x_0^2+x_0^2}{2}}=\sqrt{2}$,即可求得梯形ORMT面积的最大值.

解答 解:(Ⅰ)设AQ于BP交点C为(x,y),P(-2,y1),Q(x1,2),
由题可知,$\frac{y_1}{2}=\frac{{{x_1}+2}}{4},\frac{y}{x+2}=\frac{2}{{{x_1}+2}},\frac{y}{x-2}=\frac{y_1}{-4}$,(4分)
从而有$\frac{-4y}{x-2}=\frac{x+2}{y}$,整理得$\frac{x^2}{4}+{y^2}=1$,即为椭圆方程,
椭圆E的方程$\frac{x^2}{4}+{y^2}=1$;(6分)
(Ⅱ)R(2,0),设M(x0,y0),由${y_0}=\frac{1}{2}\sqrt{4-x_0^2}$,(8分)
从而所求四边形面积$S=\frac{1}{2}×2×{y_0}+\frac{1}{2}×1×{x_0}=\frac{{\sqrt{4-x_0^2}}}{2}+\frac{x_0}{2}≤\sqrt{\frac{4-x_0^2+x_0^2}{2}}=\sqrt{2}$,(10分)
当且仅当${x_0}=\sqrt{2},{y_0}=\frac{{\sqrt{2}}}{2}$取得最大值,
梯形ORMT面积的最大值$\sqrt{2}$.(12分)

点评 本小题考查椭圆的标准方程及面积最值问题,考查基本不等式的性质,考查学生的逻辑思维能力和运算求解能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网