题目内容
在△ABC中,点D为边BC上靠近B点的三等分点,动直线MN过AD的中点O,
=
,
=
,
=m
,
=n
,则m+2n的最小值为 .
| AB |
| a |
| AC |
| b |
| AN |
| a |
| AM |
| b |
考点:平面向量的基本定理及其意义,向量的线性运算性质及几何意义
专题:平面向量及应用
分析:画出图形,如图所示.由于M,O,N三点共线,利用向量共线定理可得:存在实数λ使得
=λ
+(1-λ)
,又
=m
,
=n
,
=
.代入可得
=2λm
+2n(1-λ)
.(*)另一方面:点D为边BC上靠近B点的三等分点,可得
=
+
=
+
.与(*)比较可得:
,消去λ化为
+
=6.再利用“乘1法”和基本不等式即可得出.
| AO |
| AN |
| AM |
| AN |
| a |
| AM |
| b |
| AO |
| 1 |
| 2 |
| AD |
| AD |
| a |
| b |
| AD |
| AB |
| BD |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
|
| 2 |
| m |
| 1 |
| n |
解答:
解:画出图形,如图所示
.
∵M,O,N三点共线,∴存在实数λ使得
=λ
+(1-λ)
,
∵
=
,
=
,
=m
,
=n
,
=
.
∴
=λm
+n(1-λ)
,即
=2λm
+2n(1-λ)
.(*)
∵点D为边BC上靠近B点的三等分点,
∴
=
+
=
+
=
+
(
-
)=
+
=
+
.
与(*)比较可得:
,消去λ化为
+
=6.
∵m,n>0,
∴m+2n=
(
+
)(m+2n)=
(4+
+
)≥
(4+2
)=
,当且仅当m=2n=
时取等号.
∴m+2n的最小值为
.
故答案为:
.
∵M,O,N三点共线,∴存在实数λ使得
| AO |
| AN |
| AM |
∵
| AB |
| a |
| AC |
| b |
| AN |
| a |
| AM |
| b |
| AO |
| 1 |
| 2 |
| AD |
∴
| 1 |
| 2 |
| AD |
| a |
| b |
| AD |
| a |
| b |
∵点D为边BC上靠近B点的三等分点,
∴
| AD |
| AB |
| BD |
| AB |
| 1 |
| 3 |
| BC |
| AB |
| 1 |
| 3 |
| AC |
| AB |
| 2 |
| 3 |
| AB |
| 1 |
| 3 |
| AC |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
与(*)比较可得:
|
| 2 |
| m |
| 1 |
| n |
∵m,n>0,
∴m+2n=
| 1 |
| 6 |
| 2 |
| m |
| 1 |
| n |
| 1 |
| 6 |
| m |
| n |
| 4n |
| m |
| 1 |
| 6 |
|
| 4 |
| 3 |
| 2 |
| 3 |
∴m+2n的最小值为
| 4 |
| 3 |
故答案为:
| 4 |
| 3 |
点评:本题考查了向量的共线定理、共面向量基本定理、向量的三角形法则、“乘1法”和基本不等式,考查了推理能力和技能数列,属于难题.
练习册系列答案
相关题目