题目内容

18.已知函数f(x)=ex(x-b)(b∈R).若存在$x∈[{\frac{1}{2},2}]$,使得f(x)+xf'(x)>0,则实数b的取值范围是(-∞,$\frac{8}{3}$).

分析 求出f′(x),分离参数b,根据函数的单调性求出b的范围即可.

解答 解:∵f(x)=ex(x-b),
∴f′(x)=ex(x-b+1),
若存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,
则若存在x∈[$\frac{1}{2}$,2],使得ex(x-b)+xex(x-b+1)>0,
即存在x∈[$\frac{1}{2}$,2],使得b<$\frac{{x}^{2}+2x}{x+1}$成立,
令g(x)=$\frac{{x}^{2}+2x}{x+1}$,x∈[$\frac{1}{2}$,2],
则g′(x)=$\frac{{x}^{2}+2x+2}{{(x+1)}^{2}}$>0,
g(x)在[$\frac{1}{2}$,2]递增,
∴g(x)最大值=g(2)=$\frac{8}{3}$,
故b<$\frac{8}{3}$,
故答案为:(-∞,$\frac{8}{3}$).

点评 本题考查了函数的单调性问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网