题目内容

8.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\sqrt{3}$,1),则∠ABC=$\frac{π}{6}$.

分析 根据向量的夹角公式即可求出答案.

解答 解:向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\sqrt{3}$,1),
∴|$\overrightarrow{BA}$|=1,|$\overrightarrow{BC}$|=2,$\overrightarrow{BA}•\overrightarrow{BC}$=$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴cos∠ABC=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}|•|\overrightarrow{BC|}}$=$\frac{\sqrt{3}}{2}$,
∵0≤′∠ABC≤π,
∴∠ABC=$\frac{π}{6}$,
故答案为:$\frac{π}{6}$

点评 本题考查了向量的夹角公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网