题目内容
为了得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象上所有的点( )
A、向左平移
| ||
B、向右平移
| ||
| C、向左平移1个单位长度 | ||
| D、向右平移1个单位长度 |
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答:
解:∵y=cos(2x+1)=cos2(x+
),故将函数y=cos2x的图象上所有的点向左平移
个单位长度,
可得函数y=cos(2x+1)的图象,
故选:A.
| 1 |
| 2 |
| 1 |
| 2 |
可得函数y=cos(2x+1)的图象,
故选:A.
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
A、
| ||||
B、
| ||||
C、30(
| ||||
D、30(
|
已知两点A(-2,-4),B(1,5)到直线l:ax+y+1=0的距离相等,则实数a的值为( )
| A、-3 | B、3 |
| C、-3或3 | D、1或3 |
若直线l1:mx-y-2=0与直线l2:(2-m)x-y+1=0互相平行,则实数m的值为( )
| A、-1 | B、0 | C、1 | D、2 |
若θ∈(
,π),则
的值是( )
| π |
| 2 |
| ||
| sinθ |
| A、1 | B、-1 | C、±1 | D、0 |
如图,若输入两个不同的正数,经程序运行后输出的数相同,则称这两个数为“协同数”,那么下面所给的四组数中属于“协同数”的一组是( )

| A、6,64 |
| B、8,16 |
| C、16,256 |
| D、30,512 |
算法流程图如图所示,若输入x=-1,n=3,其输出结果是( )

| A、-4 | B、4 | C、-3 | D、5 |