题目内容

如图,一艘轮船从N处开始按照北偏西35°的方向以每小时30海里的速度航行,灯塔M原来在轮船的北偏东25°方向上,经过30分钟后,灯塔在轮船的北偏东70°方向上,则灯塔M距离N处的海里数为(  )
A、
15(
3
+1)
2
B、
15(
3
-1)
2
C、30(
3
+1)
D、30(
3
-1)
考点:解三角形的实际应用
专题:应用题,解三角形
分析:首先将实际问题抽象成解三角形问题,再借助于正弦定理求出边长.
解答: 解:由题意可知△AMN中AN=15,∠N=60°,∠MAN=75°,
∴∠M=45°,由正弦定理可得
15
2
2
=
MN
6
+
2
4

∴MN=
15(
3
+1)
2

故选:A.
点评:本题考查解三角形的实际应用,考查学生的计算能力,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网