题目内容

已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn,有Sn=1×2+3×22+5×23+…+(2n-1)•2n
 
考点:数列的求和
专题:等差数列与等比数列
分析:利用“错位相减法”、等比数列的前n项和公式即可得出.
解答: 解:∵Sn=1×2+3×22+5×23+…+(2n-1)•2n
2Sn=22+3×23+…+(2n-3)•2n+(2n-1)•2n+1
∴-Sn=2+2×22+2×23+…+2×2n-(2n-1)×2n+1=
22(2n-1)
2-1
-2-(2n-1)×2n+1=(3-2n)•2n+1-6,
Sn=(2n-3)×2n+1+6
点评:本题考查了“错位相减法”、等比数列的前n项和公式,考查了计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网