题目内容

数列{an}满足递推式an=3an-1+3n-1(n≥2),且a1=5.
(Ⅰ)求a2,a3的值;
(Ⅱ)若存在实数λ使{
an
3n
}为等差数列,求λ的值及{an}的通项公式;
(Ⅲ)求{an}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由数列{an}满足递推式分别取n=2,3,利用递推思想能求出a2,a3的值.
(Ⅱ)设
an
3n
=xn+y
,从而得到an=(xn+y)•3n,由a1=5,a2=23,a3=95,利用待定系数法能求出λ的值及{an}的通项公式.
(Ⅲ)由an=(n+
1
2
)•3n+
1
2
,利用错位相减法能求出{an}的前n项和Sn
解答: 解:(Ⅰ)∵数列{an}满足递推式an=3an-1+3n-1(n≥2),且a1=5,
a2=3×5+32-1=23,
a3=3×23+33-1=95.
(Ⅱ)∵{
an
3n
}为等差数列,∴设
an
3n
=xn+y

an=(xn+y)•3n
又由a1=5,a2=23,a3=95,
5=a1=(x+y)•3-λ
23=a2=(2x+y)•9-λ
95=a3=(3x+y)•27-λ
,解得λ=-
1
2
,x=1,y=
1
2

an=(n+
1
2
)•3n+
1
2

an=(n+
1
2
)•3n+
1
2

λ=
1
2

(Ⅲ)∵an=(n+
1
2
)•3n+
1
2

Tn=(1+
1
2
)•31+(2+
1
2
)•32+…+(n+
1
2
)•3n
,①
3Tn=(1+
1
2
)•32+(2+
1
2
)•32+…+
(n+
1
2
)•3n+1
,②
-2Tn=
9
2
+32+33+…+3n-(n+
1
2
)•3n+1

=
9
2
+
32(1-3n-1)
1-3
-(n+
1
2
)•3n+1
=-n•3n+1
Tn=
1
2
n•3n+1

∴{an}的前n项和Sn=Tn+
n
2
=
n
2
(3n+1+1)
点评:本题考查数列的通项公式和前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网