ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶¨µãF1£¨-
£¬0£©£¬F2£¨
£¬0£©£¬¶¯µãRÔÚÇúÏßCÉÏÔ˶¯ÇÒ±£³Ö|RF1|+|RF2|µÄÖµ²»±ä£¬ÇúÏßC¹ýµãT£¨0£¬1£©£¬
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©MÊÇÇúÏßCÉÏÒ»µã£¬¹ýµãM×÷бÂÊ·Ö±ðΪk1ºÍk2µÄÖ±ÏßMA£¬MB½»ÇúÏßCÓÚA¡¢BÁ½µã£¬ÈôA¡¢B¹ØÓÚÔµã¶Ô³Æ£¬Çók1•k2µÄÖµ£»
£¨¢ó£©Ö±Ïßl¹ýµãF2£¬ÇÒÓëÇúÏßC½»ÓÚPQ£¬ÓÐÈçÏÂÃüÌâp£º¡°µ±Ö±Ïßl´¹Ö±ÓÚxÖáʱ£¬¡÷F1PQµÄÃæ»ýÈ¡µÃ×î´óÖµ¡±£®ÅжÏÃüÌâpµÄÕæ¼Ù£®ÈôÊÇÕæÃüÌ⣬Çë¸øÓèÖ¤Ã÷£»ÈôÊǼÙÃüÌ⣬Çë˵Ã÷ÀíÓÉ£®
| 3 |
| 3 |
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©MÊÇÇúÏßCÉÏÒ»µã£¬¹ýµãM×÷бÂÊ·Ö±ðΪk1ºÍk2µÄÖ±ÏßMA£¬MB½»ÇúÏßCÓÚA¡¢BÁ½µã£¬ÈôA¡¢B¹ØÓÚÔµã¶Ô³Æ£¬Çók1•k2µÄÖµ£»
£¨¢ó£©Ö±Ïßl¹ýµãF2£¬ÇÒÓëÇúÏßC½»ÓÚPQ£¬ÓÐÈçÏÂÃüÌâp£º¡°µ±Ö±Ïßl´¹Ö±ÓÚxÖáʱ£¬¡÷F1PQµÄÃæ»ýÈ¡µÃ×î´óÖµ¡±£®ÅжÏÃüÌâpµÄÕæ¼Ù£®ÈôÊÇÕæÃüÌ⣬Çë¸øÓèÖ¤Ã÷£»ÈôÊǼÙÃüÌ⣬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏߵĹØÏµ,ÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ,¹ì¼£·½³Ì
רÌ⣺Բ׶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©ÓÉÌâÒâÇóµÃ|RF1|+|RF2|=4£¬·ûºÏÍÖÔ²¶¨Ò壬ÇÒÇóµÃa£¬cµÄÖµ£¬½øÒ»²½µÃµ½b2µÄÖµ£¬ÔòÇúÏßCµÄ·½³Ì¿ÉÇó£»
£¨¢ò£©ÉèM£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬ÓɵãM£¬AÔÚÍÖÔ²Éϵõ½M£¬AµÄ×ø±êµÄÁ½¸ö·½³Ì£¬×÷²îºóµÃµ½
+y02-y12=0£¬ÓÉÁ½µãʽµÃµ½k1ºÍk2£¬½áºÏÉÏʽ¼´¿ÉÇóµÃk1•k2=
=-
£»
£¨¢ó£©ÉèÖ±ÏßlµÄ·½³ÌΪx=my+
£¬´úÈëÍÖÔ²·½³Ì
+y2=1£¬ÓÉÏÒ³¤¹«Ê½°Ñ|PQ|Óú¬ÓÐmµÄ´úÊýʽ±íʾ£¬Çó³öF1µ½Ö±ÏßlµÄ¾àÀ룬´úÈ룬¡÷F1PQµÄÃæ»ý¹«Ê½£¬»»ÔªºóÀûÓûù±¾²»µÈʽÇó×îÖµ£®Çó³ö¡÷F1PQµÄÃæ»ýÈ¡µÃ×î´óֵʱµÄmÖµ£¬´Ó¶øµÃµ½Ö±Ïß·½³Ì£¬ËµÃ÷ÃüÌâpÊǼÙÃüÌ⣮
£¨¢ò£©ÉèM£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬ÓɵãM£¬AÔÚÍÖÔ²Éϵõ½M£¬AµÄ×ø±êµÄÁ½¸ö·½³Ì£¬×÷²îºóµÃµ½
| x02-x12 |
| 4 |
| y02-y12 |
| x02-x12 |
| 1 |
| 4 |
£¨¢ó£©ÉèÖ±ÏßlµÄ·½³ÌΪx=my+
| 3 |
| x2 |
| 4 |
½â´ð£º
½â£º£¨¢ñ£©¡ß|RF1|+|RF2|=|TF1|+|TF2|=2
=4£¾|F1F2|=2
£¬
¡àÇúÏßCΪÒÔÔµãΪÖÐÐÄ£¬F1¡¢F2Ϊ½¹µãµÄÍÖÔ²£¬
ÉèÆä°ë³¤ÖáΪa£¬°ë¶ÌÖáΪb£¬°ë½¹¾àΪc£¬Ôò2a=2£¬2c=2
£¬
¡àa=2£¬c=
£¬b2=a2-c2=1£®
¡àÇúÏßCµÄ·½³ÌΪ
+y2=1£»
£¨¢ò£©ÉèM£¨x0£¬y0£©£¬A£¨x1£¬y1£©ÔòB£¨-x1£¬-y1£©£¬
¡ßµãM£¬AÔÚÍÖÔ²
+y2=1ÉÏ£¬
¡à
+y02=1£¬
+y12=1£¬
Ïà¼õµÃ
+y02-y12=0£¬
ÓÖk1=
£¬k2=
£¬
¡àk1•k2=
=-
£»
£¨¢ó£©ÉèÖ±ÏßlµÄ·½³ÌΪx=my+
£¬´úÈëÍÖÔ²·½³Ì
+y2=1£¬
µÃ(4+m2)y2+2
my-1=0£¬¼ÆËã²¢Åжϵá÷£¾0£¬
ÉèP£¨x3£¬y3£©£¬Q£¨x4£¬y4£©£¬µÃ
£¬
¡à|PQ|=
=
=
£®
F1µ½Ö±ÏßlµÄ¾àÀëd=
£¬
Éèt=
£¬Ôòt¡Ý1£¬
¡àS¡÷F1PQ=
|PQ|•d=4
¡Á
=
=
¡Ü2£®
µ±t2=3£¬¼´m2=2£¬m=¡À
ʱ£¬¡÷F1PQµÄÃæ»ý×î´ó£®
¡àÔÃüÌâÊǼÙÃüÌ⣬¡÷F1PQµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬Ö±ÏßlµÄ·½³ÌΪ£º
x+
y-
=0ºÍx-
y-
=0£®
(
|
| 3 |
¡àÇúÏßCΪÒÔÔµãΪÖÐÐÄ£¬F1¡¢F2Ϊ½¹µãµÄÍÖÔ²£¬
ÉèÆä°ë³¤ÖáΪa£¬°ë¶ÌÖáΪb£¬°ë½¹¾àΪc£¬Ôò2a=2£¬2c=2
| 3 |
¡àa=2£¬c=
| 3 |
¡àÇúÏßCµÄ·½³ÌΪ
| x2 |
| 4 |
£¨¢ò£©ÉèM£¨x0£¬y0£©£¬A£¨x1£¬y1£©ÔòB£¨-x1£¬-y1£©£¬
¡ßµãM£¬AÔÚÍÖÔ²
| x2 |
| 4 |
¡à
| x02 |
| 4 |
| x12 |
| 4 |
Ïà¼õµÃ
| x02-x12 |
| 4 |
ÓÖk1=
| y0-y1 |
| x0-x1 |
| y0+y1 |
| x0+x1 |
¡àk1•k2=
| y02-y12 |
| x02-x12 |
| 1 |
| 4 |
£¨¢ó£©ÉèÖ±ÏßlµÄ·½³ÌΪx=my+
| 3 |
| x2 |
| 4 |
µÃ(4+m2)y2+2
| 3 |
ÉèP£¨x3£¬y3£©£¬Q£¨x4£¬y4£©£¬µÃ
|
¡à|PQ|=
| (x3-x4)2+(y3-y4)2 |
| (1+m2)[(y3+y4)2-4y3y4] |
=
| 4(1+m2) |
| 4+m2 |
F1µ½Ö±ÏßlµÄ¾àÀëd=
2
| ||
|
Éèt=
| 1+m2 |
¡àS¡÷F1PQ=
| 1 |
| 2 |
| 3 |
| ||
| 4+m2 |
=
4
| ||
| t2+3 |
4
| ||
t+
|
µ±t2=3£¬¼´m2=2£¬m=¡À
| 2 |
¡àÔÃüÌâÊǼÙÃüÌ⣬¡÷F1PQµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬Ö±ÏßlµÄ·½³ÌΪ£º
x+
| 2 |
| 3 |
| 2 |
| 3 |
µãÆÀ£º±¾Ì⿼²éÁ˹켣·½³Ì£¬¿¼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏߵĹØÏµ£¬ÑµÁ·ÁË¡°µã²î·¨¡±£¬¿¼²éÁËÏÒ³¤¹«Ê½µÄÓ¦Óã¬ÑµÁ·ÁËÀûÓûù±¾²»µÈʽÇó×îÖµ£¬Éæ¼°Ö±ÏßÓëÔ²×¶ÇúÏߵĹØÏµÎÊÌ⣬³£°ÑÖ±ÏßÓëÔ²×¶ÇúÏßÁªÁ¢£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³ÌºóÀûÓøùÓëϵÊý¹ØÏµÇó½â£®´ËÌâÊǸ߿¼ÊÔ¾íÖеÄѹÖáÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÔÚ³¤Îª8µÄÏß¶ÎABÉÏÈÎȡһµãC£¬ÏÖ×÷Ò»¾ØÐΣ¬Áڱ߳¤·Ö±ðµÈÓÚAC¡¢BCµÄ³¤£¬Ôò¸Ã¾ØÐÎÃæ»ý´óÓÚ15µÄ¸ÅÂÊ£¨¡¡¡¡£©
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|
µ±ÊµÊýx£¬yÂú×ã²»µÈʽ
ʱ£¬ºãÓÐax+y¡Ü2³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ¼¯ºÏÊÇ£¨¡¡¡¡£©
|
| A¡¢£¨0£¬1] |
| B¡¢£¨-¡Þ£¬1] |
| C¡¢£¨-1£¬1] |
| D¡¢£¨1£¬2£© |
Èçͼ¸ø³öµÄÊǼÆËã1+
+
+¡+
µÄÖµµÄÒ»¸ö³ÌÐò¿òͼ£¬ÆäÖÐÅжϿòÄÚÓ¦ÌîÈëµÄÌõ¼þÊÇ£¨¡¡¡¡£©

| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 11 |
| A¡¢i£¼12 | B¡¢i£¾11 |
| C¡¢i£¼11 | D¡¢i¡Ü6 |