题目内容

5.某生产旅游纪念品的工厂,拟在2017年度进行系列促销活动.经市场调查和测算,该纪念品的年销售量x(单位:万件)与年促销费用t(单位:万元)之间满足3-x与t+1成反比例(若不搞促销活动,纪念品的年销售量只有1万件);已知工厂2017年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为“年平均每件生产成本的1.5倍”与“年平均每件所占促销费的一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用);
(1)请把该工厂2017年的年利润y(单位:万元)表示成促销费t(单位:万元)的函数;
(2)试问:当2017的促销费投入多少万元时,该工厂的年利润最大?

分析 (1)根据3-x与t+1成反比例,当年促销费用t=0万元时,年销量是1万件,可求出k的值;进而通过x表示出年利润y,并化简整理,代入整理即可求出y万元表示为促销费t万元的函数;
(2)利用基本不等式求出最值,即可得结论.

解答 解:(1)设反比例系数为k(k≠0),有$3-x=\frac{k}{t+1}$
因为当t=0时x=1,代入得k=2,所以$x=3-\frac{2}{t+1}({t≥0})$;
易得:$y=x•({\frac{3+32x}{x}•1.5+\frac{t}{2x}})-({3+32x})-t$,
化简得:$y=\frac{99}{2}-\frac{32}{t+1}-\frac{t}{2}({t≥0})$;
(2)$y=50-({\frac{32}{t+1}+\frac{t+1}{2}})≤50-2\sqrt{\frac{32}{t+1}•\frac{t+1}{2}}=42$,当且仅当t=7时取等号;
所以,当2017年的促销费投入7万元时,工厂的年利润最大为42万元.

点评 本题主要考查函数模型的选择与应用,考查基本不等式在求最值中的应用,考查学生分析问题和解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网