题目内容

9.(1)求函数y=x(a-2x)(x>0,a为大于2x的常数)的最大值;
(2)已知a>0,b>0,c>0,a2+b2+c2=4,求ab+bc+ac的最大值.

分析 (1)由x>0,a>2x,y=x(a-2x)=$\frac{1}{2}$×2x(a-2x),运用基本不等式即可得到所求最大值;
(2)运用重要不等式,推出2ab+2bc+2ac≤2(a2+b2+c2),即可得到所求最大值.

解答 解:(1)∵x>0,a>2x,
∴y=x(a-2x)=$\frac{1}{2}$×2x(a-2x)≤$\frac{1}{2}{({\frac{2x+(a-2x)}{2}})^2}$=$\frac{a^2}{8}$,
当且仅当x=$\frac{a}{4}$时取等号,故函数的最大值为$\frac{a^2}{8}$.
(2)∵a2+b2+c2=4,
∴2ab+2bc+2ac≤(a2+b2)+(b2+c2)+(a2+c2)=2(a2+b2+c2)=8,
∴ab+bc+ac≤4,
当且仅当a=b=c时,取得等号,
∴ab+bc+ac的最大值为4.

点评 本题考查函数的最值的求法,注意运用变形和基本不等式,以及满足的条件,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网