题目内容
| OD |
| DB |
| A |
| a |
| OB |
| b |
(1)用
| a |
| b |
| OC |
| DC |
(2)若
| OE |
| λOA |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)由于点C与点B关于点A对称,可得
=
(
+
),解得
=2
-
.即可得出
=
+
.
(2)由C,E,D三点共线,根据向量共线定理存在实数m使得
=m
+(1-m)
.另一方面
=λ
=λ
,即可得出.
| OA |
| 1 |
| 2 |
| OB |
| OC |
| OC |
| a |
| b |
| DC |
| DO |
| OC |
(2)由C,E,D三点共线,根据向量共线定理存在实数m使得
| OE |
| OC |
| OD |
| OE |
| OA |
| a |
解答:
解:(1)∵点C与点B关于点A对称,∴点A是线段BC的中点,
∴
=
(
+
),即
=
(
+
),解得
=2
-
.
=
+
=-
+
=-
+2
-
=2
-
.
(2)∵C,E,D三点共线,∴存在实数m使得
=m
+(1-m)
=m(2
-
)+(1-m)•
=2m
+
.
又
=λ
=λ
,
∴
,解得λ=
.
∴
| OA |
| 1 |
| 2 |
| OB |
| OC |
| a |
| 1 |
| 2 |
| b |
| OC |
| OC |
| a |
| b |
| DC |
| DO |
| OC |
| 2 |
| 3 |
| OB |
| OC |
| 2 |
| 3 |
| b |
| a |
| b |
| a |
| 5 |
| 3 |
| b |
(2)∵C,E,D三点共线,∴存在实数m使得
| OE |
| OC |
| OD |
| a |
| b |
| 2 |
| 3 |
| b |
| a |
| 2-5m |
| 3 |
| b |
又
| OE |
| OA |
| a |
∴
|
| 4 |
| 5 |
点评:本题考查了中心对称、向量的平行四边形法则、向量共线定理、共面向量基本定理,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目