题目内容
12.已知集合M={1,3,4},N={x|x2-4x+3=0},则M∩N=( )| A. | {3,4} | B. | {1,4} | C. | {1,3} | D. | {3} |
分析 求出N中方程的解得到x的值,确定出N,求出M与N的交集即可.
解答 解:由N中方程变形得:(x-1)(x-3)=0,
解得:x=1或x=3,即N={1,3},
∵M={1,3,4},
∴M∩N={1,3},
故选:C.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
2.已知数列{an}满足:$\frac{{a}_{n}+1}{{a}_{n+1}+1}$=$\frac{1}{2}$,且a2=2,则a4等于( )
| A. | -$\frac{1}{2}$ | B. | 23 | C. | 12 | D. | 11 |
20.已知P是圆x2+y2=R2上的一个动点,过点P作曲线C的两条互相垂直的切线,切点分别为M,N,MN的中点为E.若曲线C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且R2=a2+b2,则点E的轨迹方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$.若曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$,且R2=a2-b2,则点E的轨迹方程是( )
| A. | $\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$ | B. | $\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$ | ||
| C. | $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$ | D. | $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$ |