题目内容
20.已知P是圆x2+y2=R2上的一个动点,过点P作曲线C的两条互相垂直的切线,切点分别为M,N,MN的中点为E.若曲线C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且R2=a2+b2,则点E的轨迹方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$.若曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$,且R2=a2-b2,则点E的轨迹方程是( )| A. | $\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$ | B. | $\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$ | ||
| C. | $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$ | D. | $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$ |
分析 由椭圆与双曲线的定义中的运算互为逆运算,即可得出结论.
解答 解:由于椭圆与双曲线的定义中的运算互为逆运算,即加法与减法互为逆运算,
∴猜想双曲线对应的点E的轨迹方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$,
故选A.
点评 本题考查类比推理,考查学生分析解决问题的能力,正确类比是关键.
练习册系列答案
相关题目
10.已知实数x,y满足$\left\{\begin{array}{l}{y≤2x}\\{2x-5y-8≤0}\\{y≤4-x}\end{array}\right.$,则z=x+2y的最小值为( )
| A. | $\frac{20}{3}$ | B. | 4 | C. | -6 | D. | -5 |
11.2017年春晚分会场之一是凉山西昌,电视播出后,通过网络对凉山分会场的表演进行了调查.调查分三类人群进行,参加了网络调查的观众们的看法情况如下:
(1)从这三类人群中各选一个人,求恰好有2人认为“非常好”的概率(用比例作为相应概率);
(2)若在四川人(非凉山)群中按所持态度分层抽样,抽取9人,在这9人中任意选取3人,认为“非常好”的人数记为ξ,求ξ的分布列和数学期望.
| 观众对凉山分会场表演的看法 | 非常好 | 好 |
| 中国人且非四川(人数比例) | $\frac{1}{2}$ | $\frac{1}{2}$ |
| 四川人(非凉山)(人数比例) | $\frac{2}{3}$ | $\frac{1}{3}$ |
| 凉山人(人数比例) | $\frac{3}{4}$ | $\frac{1}{4}$ |
(2)若在四川人(非凉山)群中按所持态度分层抽样,抽取9人,在这9人中任意选取3人,认为“非常好”的人数记为ξ,求ξ的分布列和数学期望.
8.圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,则$\frac{1}{a}$$+\frac{3}{b}$的最小值是( )
| A. | 2$\sqrt{3}$ | B. | $\frac{20}{3}$ | C. | 4 | D. | $\frac{16}{3}$ |
15.设复数z满足iz=1+2i,则z的共轭复数的虚部为( )
| A. | i | B. | -i | C. | -1 | D. | 1 |
12.已知集合M={1,3,4},N={x|x2-4x+3=0},则M∩N=( )
| A. | {3,4} | B. | {1,4} | C. | {1,3} | D. | {3} |