题目内容
已知数列{an}的各项都为正数,且对任意n∈N*,a2n-1,a2n,a2n+1成等差数列,a2n,a2n+1,a2n+2成等比数列.
(1)若a2=1,a5=3,求a1的值;
(2)设a1<a2,求证:对任意n∈N*,且n≥2,都有
<
.
(1)若a2=1,a5=3,求a1的值;
(2)设a1<a2,求证:对任意n∈N*,且n≥2,都有
| an+1 |
| an |
| a2 |
| a1 |
考点:数列与不等式的综合,等差数列的性质,等比数列的性质
专题:综合题,等差数列与等比数列
分析:(1)在已知条件中,取n为具体值可得a1,a2,a3成等差数列,a3,a4,a5成等差数列,a2,a3,a4成等比数列,由等差中项的概念和等比中项的概念结合a2=1,a5=3列式求得a1的值;
(2)当n为大于等于3的奇数时,由已知可得an,an+1,an+2成等差数列,利用作差法证明
≤
;
当n为大于等于2的偶数时,由已知可得an,an+1,an+2成等比数列,由等比中项的概念可得
=
,
则有
≤
≤…≤
.验证
<
后即可得到对任意n∈N*,且n≥2,都有
<
.
(2)当n为大于等于3的奇数时,由已知可得an,an+1,an+2成等差数列,利用作差法证明
| an+2 |
| an+1 |
| an+1 |
| an |
当n为大于等于2的偶数时,由已知可得an,an+1,an+2成等比数列,由等比中项的概念可得
| an+2 |
| an+1 |
| an+1 |
| an |
则有
| an+2 |
| an+1 |
| an+1 |
| an |
| a3 |
| a2 |
| a3 |
| a2 |
| a2 |
| a1 |
| an+1 |
| an |
| a2 |
| a1 |
解答:
(1)解:由a2n-1,a2n,a2n+1成等差数列,可知a1,a2,a3成等差数列,a3,a4,a5成等差数列,
由a2n,a2n+1,a2n+2成等比数列,可知a2,a3,a4成等比数列,
则
,
又a2=1,a5=3,
∴
,则2a32=a3+3,解得a3=
或a3=-1(舍),
∴a1=2-
=
;
(2)证明:①若n为奇数且n≥3时,则an,an+1,an+2成等差数列,
∵
-
=
=
=-
≤0,
∴
≤
;
②若n为偶数且n≥2时,则an,an+1,an+2成等比数列,
∴
=
,
由①②可知,对任意n≥2,n∈N*,有
≤
≤…≤
.
又∵
-
=
-
=
=-
,
∵a2>a1>0,
∴-
<0,即
<
.
综上,
<
.
由a2n,a2n+1,a2n+2成等比数列,可知a2,a3,a4成等比数列,
则
|
又a2=1,a5=3,
∴
|
| 3 |
| 2 |
∴a1=2-
| 3 |
| 2 |
| 1 |
| 2 |
(2)证明:①若n为奇数且n≥3时,则an,an+1,an+2成等差数列,
∵
| an+2 |
| an+1 |
| an+1 |
| an |
| an+2an-an+12 |
| an+1an |
| (2an+1-an)an-an+12 |
| an+1an |
| (an+1-an)2 |
| an+1an |
∴
| an+2 |
| an+1 |
| an+1 |
| an |
②若n为偶数且n≥2时,则an,an+1,an+2成等比数列,
∴
| an+2 |
| an+1 |
| an+1 |
| an |
由①②可知,对任意n≥2,n∈N*,有
| an+2 |
| an+1 |
| an+1 |
| an |
| a3 |
| a2 |
又∵
| a3 |
| a2 |
| a2 |
| a1 |
| 2a2-a1 |
| a2 |
| a2 |
| a1 |
| 2a2a1-a12-a22 |
| a2a1 |
| (a1-a2)2 |
| a2a1 |
∵a2>a1>0,
∴-
| (a1-a2)2 |
| a1a2 |
| a3 |
| a2 |
| a2 |
| a1 |
综上,
| an+1 |
| an |
| a2 |
| a1 |
点评:本题考查了数列与不等式的综合,考查了分类讨论的数学思想方法,训练了利用作差法求证不等式,综合考查了学生的灵活应变能力,属有一定难度的题目.
练习册系列答案
相关题目