题目内容

已知数列{an}的各项都为正数,且对任意n∈N*,a2n-1,a2n,a2n+1成等差数列,a2n,a2n+1,a2n+2成等比数列.
(1)若a2=1,a5=3,求a1的值;
(2)设a1<a2,求证:对任意n∈N*,且n≥2,都有
an+1
an
a2
a1
考点:数列与不等式的综合,等差数列的性质,等比数列的性质
专题:综合题,等差数列与等比数列
分析:(1)在已知条件中,取n为具体值可得a1,a2,a3成等差数列,a3,a4,a5成等差数列,a2,a3,a4成等比数列,由等差中项的概念和等比中项的概念结合a2=1,a5=3列式求得a1的值;
(2)当n为大于等于3的奇数时,由已知可得an,an+1,an+2成等差数列,利用作差法证明
an+2
an+1
an+1
an

当n为大于等于2的偶数时,由已知可得an,an+1,an+2成等比数列,由等比中项的概念可得
an+2
an+1
=
an+1
an

则有
an+2
an+1
an+1
an
≤…≤
a3
a2
.验证
a3
a2
a2
a1
后即可得到对任意n∈N*,且n≥2,都有
an+1
an
a2
a1
解答: (1)解:由a2n-1,a2n,a2n+1成等差数列,可知a1,a2,a3成等差数列,a3,a4,a5成等差数列,
由a2n,a2n+1,a2n+2成等比数列,可知a2,a3,a4成等比数列,
2=a1+a3
a32=a2a4
2a4=a3+a5

又a2=1,a5=3,
2=a1+a3
a32=a4
2a4=a3+3
,则2a32=a3+3,解得a3=
3
2
或a3=-1(舍),
a1=2-
3
2
=
1
2

(2)证明:①若n为奇数且n≥3时,则an,an+1,an+2成等差数列,
an+2
an+1
-
an+1
an
=
an+2an-an+12
an+1an
=
(2an+1-an)an-an+12
an+1an
=-
(an+1-an)2
an+1an
≤0

an+2
an+1
an+1
an

②若n为偶数且n≥2时,则an,an+1,an+2成等比数列,
an+2
an+1
=
an+1
an

由①②可知,对任意n≥2,n∈N*,有
an+2
an+1
an+1
an
≤…≤
a3
a2

又∵
a3
a2
-
a2
a1
=
2a2-a1
a2
-
a2
a1
=
2a2a1-a12-a22
a2a1
=-
(a1-a2)2
a2a1

∵a2>a1>0,
-
(a1-a2)2
a1a2
<0
,即
a3
a2
a2
a1

综上,
an+1
an
a2
a1
点评:本题考查了数列与不等式的综合,考查了分类讨论的数学思想方法,训练了利用作差法求证不等式,综合考查了学生的灵活应变能力,属有一定难度的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网