题目内容

14.已知抛物线C:y2=2px的焦点坐标为F(2,0),则p=4;若已知点A(6,3),且点M在抛物线C上,则|MA|+|MF|的最小值为8.

分析 利用抛物线的焦点坐标,真假求解P即可;判断A的位置,利用抛物线的性质求解|MA|+|MF|的最小值.

解答 解:抛物线C:y2=2px的焦点坐标为F(2,0),则p=4;
已知点A(6,3),且点M在抛物线C:y2=8x上,可知A的抛物线内部,则|MA|+|MF|的最小值为M到抛物线的准线的距离;抛物线的准线方程为:x=-2,则|MA|+|MF|的最小值为:8.
故答案为:4;  8.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网