题目内容
设Sn为正项数列{an}的前n项和,且Sn=
(an+3)(an-1).
(1)求数列{an}的通项公式;
(2)设bn=
+
,求数列{bn}的前n项和Tn.
| 1 |
| 4 |
(1)求数列{an}的通项公式;
(2)设bn=
| an+1 |
| an |
| an |
| an+1 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由Sn=
(an+3)(an-1),利用当n≥2时,an=Sn-Sn-1,可得an-an-1=2,当n=1时,a1=S1=
(a1+3)(a1-1),解得a1,再利用等差数列的通项公式即可得出.
(2)由(1)可得bn=
+
=2+2(
-
),利用“裂项求和”即可得出.
| 1 |
| 4 |
| 1 |
| 4 |
(2)由(1)可得bn=
| 2n+1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:
解:(1)∵Sn=
(an+3)(an-1),∴当n≥2时,Sn-1=
(an-1+3)(an-1-1),an=Sn-Sn-1=
(an+3)(an-1)-
(an-1+3)(an-1-1),
化为(an+an-1)(an-an-1-2)=0,∵?n∈N*,an>0,∴an-an-1=2,
当n=1时,a1=S1=
(a1+3)(a1-1),a1>0,解得a1=3.
∴数列{an}是等差数列,首项为3,公差为2.
∴an=3+2(n-1)=2n-1.
(2)由(1)可得bn=
+
=
+
=2+2(
-
),
∴数列{bn}的前n项和Tn=2n+2[(1-
)+(
-
)+…+(
-
)]
=2n+2(1-
)
=2n+
.
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
化为(an+an-1)(an-an-1-2)=0,∵?n∈N*,an>0,∴an-an-1=2,
当n=1时,a1=S1=
| 1 |
| 4 |
∴数列{an}是等差数列,首项为3,公差为2.
∴an=3+2(n-1)=2n-1.
(2)由(1)可得bn=
| an+1 |
| an |
| an |
| an+1 |
| 2n+1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴数列{bn}的前n项和Tn=2n+2[(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=2n+2(1-
| 1 |
| 2n+1 |
=2n+
| 4n |
| 2n+1 |
点评:本题考查了递推式的应用、等差数列的定义及其通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且∠F1MF2=
,则椭圆和双曲线的离心率的倒数之和的最大值为( )
| π |
| 3 |
| A、2 | ||||
B、
| ||||
C、
| ||||
| D、4 |
已知函数y=f(x)的定义域为{x|x∈R,且x≠2},且y=f(x+2)是偶函数,当x<2时,f(x)=|2x-1|,那么当x>2时,函数f(x)的递减区间是( )
| A、(3,5) |
| B、(3,+∞) |
| C、(2,+∞) |
| D、(2,4] |
若(2
-
)n的展开式中第四项为常数项,则n=( )
| x |
| 1 | |||
|
| A、4 | B、5 | C、6 | D、7 |