题目内容

设Sn为正项数列{an}的前n项和,且Sn=
1
4
(an+3)(an-1).
(1)求数列{an}的通项公式;
(2)设bn=
an+1
an
+
an
an+1
,求数列{bn}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由Sn=
1
4
(an+3)(an-1),利用当n≥2时,an=Sn-Sn-1,可得an-an-1=2,当n=1时,a1=S1=
1
4
(a1+3)(a1-1)
,解得a1,再利用等差数列的通项公式即可得出.
(2)由(1)可得bn=
2n+1
2n-1
+
2n-1
2n+1
=2+2(
1
2n-1
-
1
2n+1
)
,利用“裂项求和”即可得出.
解答: 解:(1)∵Sn=
1
4
(an+3)(an-1),∴当n≥2时,Sn-1=
1
4
(an-1+3)(an-1-1)
,an=Sn-Sn-1=
1
4
(an+3)(an-1)-
1
4
(an-1+3)(an-1-1)

化为(an+an-1)(an-an-1-2)=0,∵?n∈N*,an>0,∴an-an-1=2,
当n=1时,a1=S1=
1
4
(a1+3)(a1-1)
,a1>0,解得a1=3.
∴数列{an}是等差数列,首项为3,公差为2.
∴an=3+2(n-1)=2n-1.
(2)由(1)可得bn=
an+1
an
+
an
an+1
=
2n+1
2n-1
+
2n-1
2n+1
=2+2(
1
2n-1
-
1
2n+1
)

∴数列{bn}的前n项和Tn=2n+2[(1-
1
3
)+(
1
3
-
1
5
)
+…+(
1
2n-1
-
1
2n+1
)]

=2n+2(1-
1
2n+1
)

=2n+
4n
2n+1
点评:本题考查了递推式的应用、等差数列的定义及其通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网