题目内容
定义集合运算:A·B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A·B的所有元素之和为________.
0
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(1) 求椭圆C的方程;
(2) 已知点P(0,1),Q(0,2).设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
已知双曲线=1(a>0,b>0)与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若PF=5,则双曲线的渐近线方程为________.
观察下列不等式:
…;照此规律,第五个不等式是________.
若一个n面体有m个面是直角三角形,则称这个n面体的直度为,如图,在长方体ABCDA1B1C1D1中,四面体A1ABC的直度为________.
证明:,,不能为同一等差数列中的三项.
已知等差数列{an}的首项a1>0,公差d>0,前n项和为Sn,且m+n=2p(m、n、p∈N*),求证:Sn+Sm≥2Sp.
用数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步验证的表达式为________.
已知椭圆()的左,右焦点分别为,上顶点为.为抛物线的焦点,且,0.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过定点的直线与椭圆交于两点(在之间),设直线
的斜率为(),在轴上是否存在点,使得以为邻边的平行四边形为菱形?若存在,求出实数的取值范围;若不存在,请说明理由.