题目内容
8.为了解本市居民的生活成本,甲、乙、内三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),甲、乙、丙所调查数据的标准差分别为x1,x2,x3,则它们的大小关系为( )| A. | s1>s2>s3 | B. | s1>s3>s2 | C. | s3>s2>s1 | D. | s3>s1>s2 |
分析 根据题意,分析3个频率分布直方图:第二组数据是单峰的每一个小长方形的差别比较小,数字数据较分散,各个段内分布均匀,第一组数据的两端数字较多,绝大部分数字都处在两端最分散,而第三组数据绝大部分数字都在平均数左右,是集中,由此得到结果.
解答 解:根据三个频率分步直方图知,
第一组数据的两端数字较多,绝大部分数字都处在两端数据偏离平均数远,最分散,其方差、标准差最大;
第三组数据是单峰的每一个小长方形的差别比较小,数字分布均匀,数据不如第一组偏离平均数大,方差比第一组中数据中的方差、标准差小,
而第二组数据绝大部分数字都在平均数左右,数据最集中,故其方差、标准差最小,
总上可知s1>s3>s2,
故选:B.
点评 本题考查频率直方图的应用,涉及标准差的意义,需要从频率直方图分析波动的大小.
练习册系列答案
相关题目
18.若双曲线的焦点到渐近线的距离是焦距的$\frac{\sqrt{5}}{5}$,则该双曲线的离心率为( )
| A. | $\frac{2\sqrt{5}}{5}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | 2 | D. | $\sqrt{5}$ |
19.设$a=\int_0^π{sinxdx}$,则${(a\sqrt{x}+\frac{1}{x})^6}$展开式的常数项为( )
| A. | -20 | B. | 20 | C. | -160 | D. | 240 |
3.已知$f(x)=\left\{\begin{array}{l}a{x^2}+x,x>0\\-x,x≤0\end{array}\right.$,若不等式f(x-1)≥f(x)对一切x∈R恒成立,则实a数的最大值为( )
| A. | $-\frac{9}{16}$ | B. | -1 | C. | $-\frac{1}{2}$ | D. | 1 |