题目内容

1.函数y=$\frac{lg(1-tanx)}{\sqrt{1-2sinx}}$的定义域是{x|$-\frac{π}{2}+2kπ<x<\frac{π}{6}+2kπ$或$\frac{5π}{6}+2kπ<x<\frac{5π}{4}+2kπ,k∈Z$}.

分析 由对数式的真数大于0,分母中根式内部的代数式大于0联立不等式组求解.

解答 解:要使原函数有意义,则$\left\{\begin{array}{l}{1-tanx>0①}\\{1-2sinx>0②}\end{array}\right.$,
解①得:$-\frac{π}{2}+kπ<x<\frac{π}{4}+kπ,k∈Z$;
解②得:$-\frac{7π}{6}+2kπ<x<\frac{π}{6}+2kπ,k∈Z$.
取交集得:$-\frac{π}{2}+2kπ<x<\frac{π}{6}+2kπ$或$\frac{5π}{6}+2kπ<x<\frac{5π}{4}+2kπ,k∈Z$.
∴函数y=$\frac{lg(1-tanx)}{\sqrt{1-2sinx}}$的定义域是{x|$-\frac{π}{2}+2kπ<x<\frac{π}{6}+2kπ$或$\frac{5π}{6}+2kπ<x<\frac{5π}{4}+2kπ,k∈Z$}.
故答案为:{x|$-\frac{π}{2}+2kπ<x<\frac{π}{6}+2kπ$或$\frac{5π}{6}+2kπ<x<\frac{5π}{4}+2kπ,k∈Z$}.

点评 本题考查函数的定义域及其求法,训练了三角不等式的解法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网