题目内容

(1)已知△ABC的顶点A(0,-1),B(0,1),直线AC,直线BC的斜率之积等于m(m0),求顶点C的轨迹方程,并判断轨迹为何种圆锥曲线.
(2)已知圆M的方程为:(x+1)2+y2=(2a)2(a>0,且a1),定点N(1,0),动点P在圆M上运动,线段PN的垂直平分线与直线MP相交于点Q,求点Q轨迹方程.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)设出顶点C的坐标,由AC,BC所在直线的斜率之积等于m(m≠0)列式整理得到顶点C的轨迹E的方程,然后分m的不同取值范围判断轨迹E为何种圆锥曲线;
(2)连接QN,则|QN|=|QP|,分类讨论,当a>1时,则点N在圆内,有|QN|+|QM|=|QP|+|QM|=|MP|=2a>|MN|;当0<a<1时,则点N在圆外,有|QN|-|QM|=|QP|-|QM|=|MP|=2a<|MN|,即可得出结论.
解答: 解:(1)设点C(x,y),由AC,BC所在直线的斜率之积等于m(m≠0),
得:
y-1
x
y+1
x
=m
,化简得:-mx2+y2=1(x≠0).
当m<-1时,轨迹E表示焦点在y轴上的椭圆,且除去(0,1),(0,-1)两点;
当m=-1时,轨迹E表示以(0,0)为圆心,半径是1的圆,且除去(0,1),(0,-1)两点;
当-1<m<0时,轨迹E表示焦点在x轴上的椭圆,且除去(0,1),(0,-1)两点;
当m>0时,轨迹E表示焦点在y轴上的双曲线,且除去(0,1),(0,-1)两点.
(2)连结QN,则|QN|=|QP|,
当a>1时,则点N在圆内,有|QN|+|QM|=|QP|+|QM|=|MP|=2a>|MN|,
∴点Q的轨迹是以M,N为焦点的椭圆,方程为:
x2
a2
+
y2
a2-1
=1

当0<a<1时,则点N在圆外,有|QN|-|QM|=|QP|-|QM|=|MP|=2a<|MN|,
∴点Q的轨迹是以M,N为焦点的双曲线,方程为:
x2
a2
-
y2
1-a2
=1
点评:本题考查了与直线有关的动点轨迹方程,考查了椭圆的简单几何性质,考查了分类讨论的数学思想方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网