题目内容

6.已知函数$f(x)=xlnx+\frac{3}{2}$.
(I)求函数f(x)的单调区间和极值;
(II)若对定义域内任意的x,$f(x)≥\frac{{-{x^2}+mx}}{2}$恒成立,求m的取值范围.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;
(Ⅱ)问题转化为m≤$\frac{2x•lnx{+x}^{2}+3}{x}$,令h(x)=$\frac{2x•lnx{+x}^{2}+3}{x}$,根据函数的单调性求出h(x)的最小值,从而求出m的最大值即可.

解答 解:(Ⅰ)f(x)的定义域是(0,+∞),
f′(x)=lnx+1,
由f′(x)>0,解得:x>$\frac{1}{e}$,
∴f(x)在($\frac{1}{e}$,+∞)递增,
f′(x)<0,解得:0<x<$\frac{1}{e}$,
∴f(x)在(0,$\frac{1}{e}$)递减,
∴f(x)在x=$\frac{1}{e}$处取得极小值,极小值是f($\frac{1}{e}$)=-$\frac{1}{e}$+$\frac{3}{2}$;
(Ⅱ)∵2f(x)≥-x2+mx-3,
即m≤$\frac{2x•lnx{+x}^{2}+3}{x}$,
令h(x)=$\frac{2x•lnx{+x}^{2}+3}{x}$,
h′(x)=$\frac{{x}^{2}+2x-3}{{x}^{2}}$=$\frac{(x+3)(x-1)}{{x}^{2}}$
令h′(x)>0,解得:x>1,令h′(x)<0,解得:0<x<1,
故h(x)在(0,1)递减,在(1,+∞)递增,
∴h(x)min=h(1)=4,
故m≤4,m的最大值是4.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网