题目内容

16.如图,在三棱锥O-ABC中,点D是棱AC的中点,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则$\overrightarrow{BD}$等于(  )
A.-$\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}$B.$\overrightarrow{a}-\overrightarrow{b}+\overrightarrow{c}$C.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$D.-$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$

分析 利用向量的三角形法则,表示所求向量,化简求解即可.

解答 解:由题意在三棱锥O-ABC中,点D是棱AC的中点,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,
可知:$\overrightarrow{BD}$=$\overrightarrow{BO}$+$\overrightarrow{OD}$,$\overrightarrow{BO}$=$-\overrightarrow{b}$,
$\overrightarrow{OD}$=$\frac{1}{2}\overrightarrow{OA}$$+\frac{1}{2}\overrightarrow{OC}$=$\frac{1}{2}\overrightarrow{a}$$+\frac{1}{2}$$\overrightarrow{c}$,
$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$.
故选:C.

点评 本题考查向量的三角形法则,空间向量与平面向量的转化,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网