ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÖ±Ïßl£ºy=kxÓëÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$½»ÓÚA¡¢BÁ½µã£¬ÆäÖÐÓÒ½¹µãFµÄ×ø±êΪ£¨c£¬0£©£¬ÇÒAFÓëBF´¹Ö±£¬ÔòÍÖÔ²CµÄÀëÐÄÂʵÄȡֵ·¶Î§Îª£¨¡¡¡¡£©| A£® | $[{\frac{{\sqrt{2}}}{2}£¬1}£©$ | B£® | $£¨{0£¬\frac{{\sqrt{2}}}{2}}]$ | C£® | $£¨{\frac{{\sqrt{2}}}{2}£¬1}£©$ | D£® | $£¨{0£¬\frac{{\sqrt{2}}}{2}}£©$ |
·ÖÎö ÓÉAFÓëBF´¹Ö±£¬ÔËÓÃÖ±½ÇÈý½ÇÐÎб±ßµÄÖÐÏß¼´ÎªÐ±±ßµÄÒ»°ë£¬ÔÙÓÉÍÖÔ²µÄÐÔÖʿɵÃc£¾b£¬½áºÏÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬¼´¿ÉµÃµ½ËùÇó·¶Î§£®
½â´ð ½â£ºÓÉAFÓëBF´¹Ö±£¬
ÔËÓÃÖ±½ÇÈý½ÇÐÎб±ßµÄÖÐÏß¼´ÎªÐ±±ßµÄÒ»°ë£¬
¿ÉµÃ||OA|=|OF|=c£¬
ÓÉ|OA|£¾b£¬¼´c£¾b£¬¿ÉµÃc2£¾b2=a2-c2£¬
¼´ÓÐc2£¾$\frac{1}{2}$a2£¬
¿ÉµÃ$\frac{\sqrt{2}}{2}$£¼e£¼1£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄÀëÐÄÂʵķ¶Î§£¬×¢ÒâÔËÓÃÖ±½ÇÈý½ÇÐÎб±ßÉÏÖÐÏßµÄÐÔÖÊ£¬ÒÔ¼°ÀëÐÄÂʹ«Ê½ºÍÏÒ³¤µÄÐÔÖÊ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÔËÐÐÏÂÃæµÄ³ÌÐò¿òͼ£¬Êä³öµÄ½á¹ûΪ£¨¡¡¡¡£©

| A£® | 5 | B£® | 6 | C£® | 7 | D£® | 8 |
14£®¡°ÊýÁÐ{an}³ÉµÈ±ÈÊýÁС±ÊÇ¡°ÊýÁÐ{lgan+1}³ÉµÈ²îÊýÁС±µÄ£¨¡¡¡¡£©
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
19£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³öµÄSΪ£¨¡¡¡¡£©

| A£® | $\frac{1}{3}$ | B£® | 2 | C£® | -$\frac{1}{2}$ | D£® | -3 |