ÌâÄ¿ÄÚÈÝ
17£®Ä³Ò½Ñ§¿ÆÑÐËù¶ÔÈËÌåÖ¬·¾º¬Á¿ÓëÄêÁäÕâÁ½¸ö±äÁ¿Ñо¿µÃµ½Ò»×éËæ»úÑù±¾Êý¾Ý£¬ÔËÓÃExcelÈí¼þ¼ÆËãµÃ$\widehat{y}$=0.577x-0.448£¨xΪÈ˵ÄÄêÁ䣬y£¨µ¥Î»£º%£©ÎªÈËÌåÖ¬·¾º¬Á¿£©£®¶ÔÄêÁäΪ37ËêµÄÈËÀ´Ëµ£¬ÏÂÃæËµ·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | ÄêÁäΪ37ËêµÄÈËÌåÄÚÖ¬·¾º¬Á¿¶¼Îª20.90% | |
| B£® | ÄêÁäΪ37ËêµÄÈËÌåÄÚÖ¬·¾º¬Á¿Îª21.01% | |
| C£® | ÄêÁäΪ37ËêµÄÈËȺÖеĴ󲿷ÖÈ˵ÄÌåÄÚÖ¬·¾º¬Á¿Îª20.90% | |
| D£® | ÄêÁäΪ37ËêµÄ´ó²¿·ÖµÄÈËÌåÄÚÖ¬·¾º¬Á¿Îª31.50% |
·ÖÎö ½«x=37´øÈë$\widehat{y}$=0.577x-0.448¼ÆËã¼´¿ÉµÃ´ð°¸£®
½â´ð ½â£ºÓÉÌâÒ⣬$\widehat{y}$=0.577x-0.448£¬
µ±x=37ʱ£¬¿ÉµÃy=20.9%£®
¡àÈÏΪÄêÁäΪ37ËêµÄÈËȺÖеĴ󲿷ÖÈ˵ÄÌåÄÚÖ¬·¾º¬Á¿Îª20.90%£®
¹ÊÑ¡C£®
µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³ÌµÄÒâÒ壬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®ÒÑÖªÅ×ÎïÏßC£ºy2=4xµÄ½¹µãΪF£¬Éè¹ýÅ×ÎïÏßÉÏÒ»µãP´¦µÄÇÐÏßΪl1£¬¹ýµãFÇÒ´¹Ö±ÓÚPFµÄÖ±ÏßΪl2£¬Ôòl1Óël2½»µãQµÄºá×ø±êΪ£¨¡¡¡¡£©
| A£® | -$\frac{3}{4}$ | B£® | -1 | C£® | -$\frac{4}{3}$ | D£® | ²»ÄÜÈ·¶¨ |
5£®ÒÑÖªa£¬b¶¼ÊÇʵÊý£¬ÇÒa£¾0£¬b£¾0£¬Ôò¡°a£¾b¡±ÊÇ¡°a+lna£¾b+lnb¡±µÄ£¨¡¡¡¡£©
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
12£®Ö±Ïßx+$\sqrt{3}$y-2=0µÄÇãб½ÇΪ£¨¡¡¡¡£©
| A£® | 30¡ã | B£® | 120¡ã | C£® | 150¡ã | D£® | 60¡ã |
6£®ÒÑÖª¸´ÊýZΪ´¿ÐéÊý£¬Èô£¨z+2£©2-8iÒ²ÊÇ´¿ÐéÊý£¬ÔòZµÄÐ鲿Ϊ£¨¡¡¡¡£©
| A£® | 2 | B£® | -2 | C£® | -2i | D£® | 2»ò-2 |
9£®
²ËÅ©¶¨ÆÚʹÓõͺ¦É±³æÅ©Ò©¶ÔÊ߲˽øÐÐÅçÈ÷£¬ÒÔ·ÀÖ¹º¦³æµÄΣº¦£¬µ«²É¼¯ÉÏÊÐʱÊß²ËÈÔ´æÓÐÉÙÁ¿µÄ²ÐÁôũҩ£¬Ê³ÓÃʱÐèÒªÓÃÇåË®ÇåÏ´¸É¾»£¬Ï±íÊÇÓÃÇåË®x£¨µ¥Î»£ºÇ§¿Ë£© ÇåÏ´¸ÃÊß²Ë1ǧ¿Ëºó£¬Êß²ËÉϲÐÁôµÄũҩy£¨µ¥Î»£ºÎ¢¿Ë£© µÄͳ¼Æ±í£º
£¨1£©ÔÚÏÂÃæµÄ×ø±êϵÖУ¬Ãè³öÉ¢µãͼ£¬²¢ÅжϱäÁ¿xÓëyµÄÏà¹ØÐÔ£»
£¨2£©ÈôÓýâÎöʽ$\widehaty=c{x^2}+d$×÷ΪÊß²Ëũҩ²ÐÁ¿$\widehaty$ÓëÓÃË®Á¿xµÄ»Ø¹é·½³Ì£¬Áî¦Ø=x2£¬¼ÆËãÆ½¾ùÖµ$\overline¦Ø$Óë$\overline y$£¬Íê³ÉÒÔϱí¸ñ£¨ÌîÔÚ´ðÌ⿨ÖУ©£¬Çó³ö$\widehaty$ÓëxµÄ»Ø¹é·½³Ì£®£¨c£¬d¾«È·µ½0.1£©
£¨3£©¶ÔÓÚijÖÖ²ÐÁôÔÚÊß²ËÉϵÄũҩ£¬µ±ËüµÄ²ÐÁôÁ¿µÍÓÚ20΢¿Ëʱ¶ÔÈËÌåÎÞº¦£¬ÎªÁË·ÅÐÄʳÓøÃÊ߲ˣ¬Çë
¹À¼ÆÐèÒªÓöàÉÙǧ¿ËµÄÇåË®Çåϴһǧ¿ËÊ߲ˣ¿£¨¾«È·µ½0.1£¬²Î¿¼Êý¾Ý$\sqrt{5}¡Ö2.236$£©
£¨¸½£ºÏßÐԻع鷽³Ì$\widehaty=bx+a$ÖÐϵÊý¼ÆË㹫ʽ·Ö±ðΪ£»$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{£¨\overline x£©}^2}}}=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y}£©}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}$£¬$a=\overline y-b\overline x$£©
| x | 1 | 2 | 3 | 4 | 5 |
| y | 58 | 54 | 39 | 29 | 10 |
£¨2£©ÈôÓýâÎöʽ$\widehaty=c{x^2}+d$×÷ΪÊß²Ëũҩ²ÐÁ¿$\widehaty$ÓëÓÃË®Á¿xµÄ»Ø¹é·½³Ì£¬Áî¦Ø=x2£¬¼ÆËãÆ½¾ùÖµ$\overline¦Ø$Óë$\overline y$£¬Íê³ÉÒÔϱí¸ñ£¨ÌîÔÚ´ðÌ⿨ÖУ©£¬Çó³ö$\widehaty$ÓëxµÄ»Ø¹é·½³Ì£®£¨c£¬d¾«È·µ½0.1£©
| ¦Ø | 1 | 4 | 9 | 16 | 25 |
| y | 58 | 54 | 39 | 29 | 10 |
| ${¦Ø_i}-\overline¦Ø$ | -10 | -7 | -2 | 5 | 14 |
| ${y_i}-\overline y$ | 20 | 16 | 1 | -28 |
¹À¼ÆÐèÒªÓöàÉÙǧ¿ËµÄÇåË®Çåϴһǧ¿ËÊ߲ˣ¿£¨¾«È·µ½0.1£¬²Î¿¼Êý¾Ý$\sqrt{5}¡Ö2.236$£©
£¨¸½£ºÏßÐԻع鷽³Ì$\widehaty=bx+a$ÖÐϵÊý¼ÆË㹫ʽ·Ö±ðΪ£»$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{£¨\overline x£©}^2}}}=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y}£©}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}$£¬$a=\overline y-b\overline x$£©