题目内容

已知数列{an}满足:对任意n∈N*均有an+1=pan+3p-3(p为常数,p≠0且p≠1),若a2,a3,a4,a5∈{-19,-7,-3,5,10,29},写出一个满足条件的a1的值为
 
考点:数列递推式
专题:等差数列与等比数列
分析:取a2=-7,a3=5,得5=-7p+3p-3,解得p=-2,由此求出a4=-19,a5=29,从而-7=-2a1-3×2-3,由此能求出a1=-1.
解答: 解:取a2=-7,a3=5,
得5=-7p+3p-3,解得p=-2,
∴a4=-2×5-3×2-3=-19,
a5=-19×(-2)-3×2-3=29,
∴-7=-2a1-3×2-3,解得a1=-1.
故答案为:-1.
点评:本题考查数列的递推公式的合理运用,是基础题,解题时要认真审题,注意递推思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网