题目内容

已知函数f(x)=(x2-2x)•lnx+ax2+2
(Ⅰ)当a=-1时,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)设函数g(x)=f(x)-x-2;
(i)若函数g(x)有且仅有一个零点时,求a的值;
(ii)在(i)的条件下,若e-2<x<e,g(x)≤m,求m的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数研究函数的极值
专题:综合题,导数的综合应用
分析:(Ⅰ)当a=-1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f(1))处的切线方程;
(Ⅱ)(i)令g(x)=f(x)-x-2=0,可得a=
1-(x-2)lnx
x
,令h(x)=
1-(x-2)lnx
x
,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求a的值;
(ii)若e-2<x<e,g(x)≤m,只需证明g(x)max≤m,即可求m的取值范围.
解答: 解:(Ⅰ)当a=-1时,f(x)=(x2-2x)•lnx-x2+2,定义域(0,+∞)
∴f′(x)=(2x-2)•lnx+(x-2)-2x.
∴f′(1)=-3,
又f(1)=1,
∴f(x)在(1,f(1))处的切线方程3x+y-4=0.

(Ⅱ)(ⅰ)令g(x)=f(x)-x-2=0
则(x2-2x)•lnx+ax2+2=x+2,即a=
1-(x-2)lnx
x
                
令h(x)=
1-(x-2)lnx
x

则h′(x)=
1-x-2lnx
x2

令t(x)=1-x-2lnx,则t′(x)=
-x-2
2

∵x>0,∴t′(x)<0,
∴t(x)在(0,+∞)上是减函数,
又∵t(1)=h′(1)=0,
∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,
∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
∴h(x)max=h(1)=1,
∴当函数g(x)有且仅有一个零点时a=1,
(ⅱ)当a=1时,g(x)=(x2-2x)•lnx+x2-x,
若e-2<x<e,g(x)≤m,只需证明g(x)max≤m,
∴g′(x)=(x-1)(3+2lnx),
令g′(x)=0得x=1或x=e-
3
2
          
又∵e-2<x<e,
∴函数g(x)在(e-2e-
3
2
 )上单调递增,在(e-
3
2
,1)上单调递减,在(1,e)上单调递增
又g(e-
3
2
 )=-
1
2
e-3+2e-
3
2
,g(e)=2e2-3e
∵g(e-
3
2
 )=-
1
2
e-3+2e-
3
2
<2e-
3
2
<2e<2e(e-
3
2
)=g(e),
∴g(e-
3
2
 )<g(e),
∴m≥2e2-3e
点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网