题目内容

设数列|an|的前n项和为Sn,且a1=4,Sn=nan-
n(n-1)
2
(n∈N*),数列|bn|满足b1=4,且bn=bn-12-(n-2)bn-1-2(n≥2,n∈N*
(1)求数列|an|的通项公式;
(2)求证:bn>an(n≥2,n∈N*);
(3)求证:(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
)<
3e
(n≥2,n∈N*)(注:e是自然对数的底数).
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)利用n≥2时,an=sn-sn-1,两式作差求通项公式;
(2)利用数学归纳法证明即可;
(3)构造函数f(x)=ln(1+x)-x,利用导数证得ln(1+x)<x,故ln(1+
1
bnbn+1
)<
1
bnbn+1
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,裂项求和得ln(1+
1
b2b3
)+ln(1+
1
b3b4
)+…+ln(1+
1
bnbn+1
)<
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
3
-
1
n+2
1
3
,即得结论成立.
解答: 解:(1)当n≥2时,Sn=nan-
n(n-1)
2
(n∈N*),Sn-1=(n-1)an-1-
(n-1)(n-2)
2

可得an=nan-(n-1)an-1-n+1,∴an-an-1=1(n≥2,n∈N*
∴数列{an}是首项为4,公差为1的等差数列,
∴an=n+3
(2)1°当n=2时,b2=
b
2
1
-2=14>a2=5不等式成立;
2°假设当n=k(k≥2,k∈N*)时,不等式成立,即bk>k+3,
那么,当n=k+1时,bk+1=
b
2
k
-(k-1)bk-2=bk(bk-k+1)-2>2bk-2>2(k+1)-2=2k≥k+2,
所以当n=k+1时,不等式也成立;
根据(1°),(2°)可知,当n≥2,n∈N*时,bn>an
(3)设f(x)=ln(1+x)-x,f′(x)=
1
1+x
-1=
-x
1+x
<0,
∴f(x)在(0,+∞)上单调递减,∴f(x)<f(0),∴ln(1+x)<x
∵当n≥2,n∈N*时,
1
bn
1
an
=
1
n+1

∴ln(1+
1
bnbn+1
)<
1
bnbn+1
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

∴ln(1+
1
b2b3
)+ln(1+
1
b3b4
)+…+ln(1+
1
bnbn+1
)<
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
3
-
1
n+2
1
3

∴(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
)<
3e
(n≥2,n∈N*).
点评:本题主要考查利用定义判断数列是等差数列及利用数学归纳法证明不等式成立等知识,考查通过构造函数法证明不等式的思想方法,属难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网