题目内容
9.已知i为虚数单位,复数z满足$\frac{z}{i}+4=3i$,则复数z的模为5.分析 把已知等式变形,然后利用复数代数形式的乘法运算化简复数z,再由复数求模公式计算得答案.
解答 解:由$\frac{z}{i}+4=3i$,
得z=i(3i-4)=-3-4i,
则复数z的模为:$\sqrt{(-3)^{2}+(-4)^{2}}=5$.
故答案为:5.
点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.
练习册系列答案
相关题目
12.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow{b}$=(-1,1),$\overrightarrow{c}$=(2,3),若$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{c}$共线,则实数λ=( )
| A. | $\frac{2}{5}$ | B. | -$\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
20.等边三角形ABC中,AB=2,E,F分别是边AB,AC上运动,若$\frac{{{S_{△AEF}}}}{{{S_{△ABC}}}}=\frac{1}{3}$,则EF长度的最小值为( )
| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{4}{3}$ | C. | 1 | D. | $\frac{2}{3}$ |
17.在(1+$\frac{x}{2}$)8二项展开式中x3的系数为m,则${∫}_{0}^{1}$(x2+mx)dx=( )
| A. | $\frac{17}{6}$ | B. | $\frac{20}{6}$ | C. | $\frac{23}{6}$ | D. | $\frac{26}{6}$ |
4.要得到函数y=sinxcosx+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$的图象,可将函数y=sin2x的图象( )
| A. | 向左平移$\frac{π}{3}$个单位 | B. | 向右平移$\frac{π}{3}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |
19.已知集合A={x|1≤x<3},B={x|x2≥4},则A∩(∁RB)=( )
| A. | {x|1≤x<2} | B. | {x|-2≤x<1} | C. | {x|1≤x≤2} | D. | {x|1<x≤2} |