题目内容
17.在(1+$\frac{x}{2}$)8二项展开式中x3的系数为m,则${∫}_{0}^{1}$(x2+mx)dx=( )| A. | $\frac{17}{6}$ | B. | $\frac{20}{6}$ | C. | $\frac{23}{6}$ | D. | $\frac{26}{6}$ |
分析 首先利用二项式定理求出m,然后计算定积分即可.
解答 解:(1+$\frac{x}{2}$)8二项展开式中x3的系数为m=${C}_{8}^{3}(\frac{1}{2})^{3}$=7,
故${∫}_{0}^{1}$(x2+mx)dx=${∫}_{0}^{1}$(x2+7x)dx=$(\frac{1}{3}{x}^{3}+\frac{7}{2}{x}^{2}){|}_{0}^{1}$=$\frac{23}{6}$;
故选C.
点评 本题考查了二项式定理以及定积分的计算;属于基础题.
练习册系列答案
相关题目
20.若函数$f(x)=\left\{\begin{array}{l}cosx,x≤a\\ \frac{1}{x},x>a\end{array}\right.$的值域为[-1,1],则实数a的取值范围是( )
| A. | [1,+∞) | B. | (-∞,-1] | C. | (0,1] | D. | (-1,0) |
8.已知M为平面内一动点,设命题甲:存在两个定点F1,F2使得||MF1|-|MF2||是定值,命题乙:M的轨迹是双曲线,则命题甲是命题乙的( )条件.
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
12.某公司近年来产品研发费用支出x万元与公司所获得利润y之间有如下统计数据:
(1)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\overline{b}$x+$\widehat{a}$
(2)试根据(1)中求出的线性回归方程,预测该公司产品研发费用支出为10万元时所获得的利润.
参考公式:用最小二乘法求现象回归方程$\widehat{y}$=$\overline{b}$x+$\widehat{a}$
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$.
| x | 2 | 3 | 4 | 5 |
| y | 18 | 27 | 32 | 35 |
(2)试根据(1)中求出的线性回归方程,预测该公司产品研发费用支出为10万元时所获得的利润.
参考公式:用最小二乘法求现象回归方程$\widehat{y}$=$\overline{b}$x+$\widehat{a}$
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$.
2.以下三个命题中,真命题的个数有( )个
①若$\frac{1}{a}$<$\frac{1}{b}$,则a<b;②若a>b>c,则a|c|>b|c|;③函数f(x)=x+$\frac{1}{x}$有最小值2.
①若$\frac{1}{a}$<$\frac{1}{b}$,则a<b;②若a>b>c,则a|c|>b|c|;③函数f(x)=x+$\frac{1}{x}$有最小值2.
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
6.已知边长为1的正方形ABCD位于第一象限,且顶点A,D分别在x,y的正半轴上(含原点O)滑动,则|$\overrightarrow{OB}$+$\overrightarrow{OC}$|的最大值是( )
| A. | 1 | B. | 2 | C. | 3 | D. | $\sqrt{10}$ |
7.已知锐角θ的终边经过点$P({m,\sqrt{3}})$且$cosθ=\frac{m}{2}$,将函数f(x)=1+2sinxcosx的图象向右平移θ个单位后得到函数y=g(x)的图象,则y=g(x)的图象的一个对称中心为( )
| A. | $({\frac{π}{3},0})$ | B. | $({\frac{π}{6},0})$ | C. | $({\frac{π}{3},1})$ | D. | $({\frac{π}{6},1})$ |