题目内容

设数列{an}满足an+1+an-1=2an(n≥2),Sn是数列{an}的前n项和,S9=99,a10=21.
(1)求数列{an}的前n项和Sn
(2)设Tn=
1
S1
+
1
S2
+…+
1
Sn
,求Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知得数列{an}是等差数列,由解得a1=3,d=2,由此能求出Sn=n2+2n.
(3)由
1
Sn
=
1
n(n+2)
=
1
2
1
n
-
1
n+2
),利用裂项求和法能求出Tn
解答: 解:(1)∵数列{an}满足an+1+an-1=2an(n≥2),
∴数列{an}是等差数列,
∵S9=99,a10=21,
9a1+
9×8
2
d=99
a1+9d=21
,解得a1=3,d=2,
∴Sn=3n+
n(n-1)
2
×2
=n2+2n.
(3)
1
Sn
=
1
n(n+2)
=
1
2
1
n
-
1
n+2
),
∴Tn=
1
S1
+
1
S2
+…+
1
Sn

=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
1
2
3
2
-
1
n+1
-
1
n+2
).
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意等差数列的性质和裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网