题目内容
若某空间几何体的三视图如图所示,则该几何体的体积是 .

考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由三视图知几何体是一个四棱锥,底面是长为6,宽为4的矩形,有一个侧面是直角三角形,且垂直于底面,从而可求几何体的体积.
解答:
解:由三视图知几何体是一个四棱锥,底面是长为6,宽为4的矩形,有一个侧面是直角三角形,且垂直于底面,
所以几何体的体积是
×6×4×4=32.
故答案为:32.
所以几何体的体积是
| 1 |
| 3 |
故答案为:32.
点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解答此类问题的关键.
练习册系列答案
相关题目
函数y=
在区间(0,+∞)上是增函数,则实数m的取值范围是( )
| 1-3m |
| x |
A、m>
| ||
B、m≥
| ||
C、m<
| ||
D、m≤
|
下列选项中,可作为函数y=f(x)的图象的是( )
| A、 |
| B、 |
| C、 |
| D、 |