ÌâÄ¿ÄÚÈÝ

18£®ÈçͼÊÇÒ»¿éÖ±½ÇÌÝÐÎÔ°µØABCD£¬AB¡ÎCD£¬¡ÏBAD=90¡ã£¬¾­²â×AB=14m£¬CD=10m£¬¡ÏABC=60¡ã£¬Äâ¹ýÏß¶ÎABÉÏÒ»µãEÉè¼ÆÒ»Ìõֱ·EF£¨µãFÔÚËıßÐÎABCDµÄ±ßÉÏ£¬²»¼ÆÂ·µÄ¿í¶È£©£¬½«¸ÃÔ°µØ·ÖÎªÃæ»ýÖ®±ÈΪ3£º1µÄ×ó¡¢Ê¯Á½²¿·Ö·Ö±ðÖÖÖ²²»Í¬»¨»Ü£®ÉèEB=x£¬EF=y£¨µ¥Î»£ºm£©
£¨1£©µ±µãFÓëµãCÖØºÏʱ£¬ÊÔÈ·¶¨µãEµÄλÖã»
£¨2£©Çóy¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£»
£¨3£©ÇëÈ·¶¨µãE£¬FµÄλÖã¬Ê¹Ö±Â·EF³¤¶È×î¶Ì£®

·ÖÎö £¨1£©µãFÓëµãCÖØºÏʱ£¬Çó³öÁ½¸öÈý½ÇÐεÄÃæ»ý£¬¸ù¾ÝÃæ»ýÖ®±È½¨Á¢·½³Ì¹ØÏµ¼´¿ÉµÃµ½½áÂÛ£®
£¨2£©ÉèEB=x£¬EF=y£¬¸ù¾ÝÃæ»ýÖ®±È½¨Á¢·½³Ì¹ØÏµ£¬½øÐÐÕûÀí¼´¿É£®
£¨3£©¸ù¾ÝÒ»Ôª¶þ´Îº¯ÊýµÄ×îÖµÐÔÖÊ£¬Çó³öEFµÄ×îÖµ£¬¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º£¨1£©µ±µãFÓëµãCÖØºÏʱ£¬h=CO=$\sqrt{3}$£¨14-10£©=4$\sqrt{3}$£¬
ËıßÐÎDABCµÄÃæ»ýS1=$\frac{£¨14-x£©+10}{2}¡Á4\sqrt{3}$=2$\sqrt{3}$£¨24-x£©£¬
¡÷CEBµÄÃæ»ýS2=$\frac{4\sqrt{3}x}{2}$=2$\sqrt{3}$x£¬
¡ß$\frac{{S}_{1}}{{S}_{2}}$=$\frac{2\sqrt{3}£¨24-x£©}{2\sqrt{3}x}$=$\frac{3}{1}$£¬¼´24-x=3x£¬
Ôò4x=24£¬x=6£¬
ÔòBE=6£¬AE=8£»
£¨2£©ËıßÐÎDAEFµÄÃæ»ýS1=$\frac{[£¨14-x£©+£¨14-x£©+\sqrt{{y}^{2}-48}]¡Á4\sqrt{3}}{2}$=$\frac{£¨28-2x+\sqrt{{y}^{2}-48}£©}{2}¡Á4\sqrt{3}$=2$\sqrt{3}$£¨28-2x+$\sqrt{{y}^{2}-48}$£©£¬
ËıßÐÎFEBCµÄÃæ»ýS2=$\frac{[£¨x-4£©-\sqrt{{y}^{2}+48}+x]¡Á4\sqrt{3}}{2}$=2$\sqrt{3}$£¨2x-4-$\sqrt{{y}^{2}-48}$£©£¬
¡ß$\frac{{S}_{1}}{{S}_{2}}$=$\frac{3}{1}$£¬¡àS1=3S2£¬
¼´2$\sqrt{3}$£¨28-2x+$\sqrt{{y}^{2}-48}$£©=3¡Á2$\sqrt{3}$£¨2x-4-$\sqrt{{y}^{2}-48}$
¼´28-2x+$\sqrt{{y}^{2}-48}$=6x-12-3$\sqrt{{y}^{2}-48}$£©£¬
Ôò4$\sqrt{{y}^{2}-48}$=8x-40£¬
Ôòy2=4x2-40x+148£¬¼´y=$\sqrt{4{x}^{2}-40x+148}$=2$\sqrt{{x}^{2}-10x+37}$£®
£¨3£©¡ßy=2$\sqrt{{x}^{2}-10x+37}$=2$\sqrt{£¨x-5£©^{2}+12}$£¬
¡àµ±x=5ʱ£¬y×îСΪy=2$\sqrt{12}$=4$\sqrt{3}$£¬´ËʱEFµÄ×îСֵΪ4$\sqrt{3}$£¬
´ËʱBE=5£¬AE=9£¬FC=1£¬DF=9£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯ÊýµÄÓ¦ÓÃÎÊÌ⣬¸ù¾ÝÌõ¼þ½¨Á¢·½³Ì¹ØÏµÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶȣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø