题目内容

函数 f(x)=sin(ωx+φ)+b的图象如图,则 f(x)的解析式S=f(1)+f(2)+f(3)+…+f(2015)的值分别为(  )
A、f(x)=
1
2
sin2πx+1,S=2015
B、f(x)=
1
2
sin2πx+1,S=2014
1
2
C、f(x)=
1
2
sin
π
2
x+1,S=2015
D、f(x)=
1
2
sin
π
2
x+1,S=2014
1
2
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:计算题,三角函数的图像与性质
分析:先根据图象求出函数解析式,再进行求和运算.要注意函数周期性在求和中的应用.
解答: 解:观察图形,知A=
1
2
,b=1,T=4,
∴ω=
π
2

所以f(x)=
1
2
sin(
π
2
x+φ)+1,
将(0,1)代入解析式得出
1
2
sin(
π
2
×0+φ)+1=1,
∴sinφ=0,∴φ=0,
所以f(x)=
1
2
sin
π
2
x+1,
只知f(1)=
3
2
,f(2)=1,f(3)=
1
2
,f(4)=1,且以4为周期,
只知f(1)=
3
2
,f(2)=1,f(3)=
1
2
,f(4)=1,f(5)=
3
2
,f(6)=1,f(7)=
1
2
,f(8)=1,且以4为周期,
f(4)+f(1)+f(2)+f(3)=4,式中共有2015项,2015=4×503+3,
∴f(1)+f(2)+f(3)+…+f(2015)=4×503+f(1)+f(2)+f(3)=2012+3=2015.
故选:C.
点评:本题主要考查三角函数的图象与性质,以观察函数的图象为命题背景,但借助函数的初等性质便可作答,考查思维的灵活性,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网