题目内容

8.已知数列{an}前n项和为Sn,且满足a1=1,2Sn=anan+1
(1)计算a2、a3、a4的值,并猜想{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{2}^{{a}_{n}}}$,求数列{bn}的前n项和Tn

分析 (1)满足a1=1,2Sn=anan+1.令n=1,可得:2S1=2a1=a1a2,解得a2=2,令n=2,3,同理可得:a3,a4,猜想an=n.
(2)bn=$\frac{{a}_{n}}{{2}^{{a}_{n}}}$=$\frac{n}{{2}^{n}}$,利用错位相减法与等比数列的求和公式即可得出.

解答 解:(1)满足a1=1,2Sn=anan+1.令n=1,可得:2S1=2a1=a1a2,解得a2=2,
令n=2,3,同理可得:a3=3,a4=4,猜想an=n.
(2)bn=$\frac{{a}_{n}}{{2}^{{a}_{n}}}$=$\frac{n}{{2}^{n}}$,
∴数列{bn}的前n项和Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
相减可得:$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$--$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$,
可得:Tn=2-$\frac{2+n}{{2}^{n}}$.

点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网