题目内容

在△ABC中,若三个内角A,B,C成等差数列且A<B<C,则cosAcosC的取值范围是(  )
A、(-
1
2
1
4
]
B、[-
3
4
1
4
]
C、(-
1
2
1
4
D、(-
3
4
1
4
考点:两角和与差的余弦函数
专题:解三角形
分析:根据三个角成等差数列求得B,进而利用两角和公式把cosAcosC转化为关于A的三角函数,最后根据A的范围求得取值范围.
解答: 解:∵A,B,C等差,
∴A+B+C=3B=180°
∴B=60°,A∈(0,60°)
cosAcosC
=cosAcos(120°-A)
=cosA(cos120°cosA+sin120°sinA)
=cos120°[
1
2
(1+cos2A)]+sin120°[
1
2
sin2A]
=(-
1
4
)+
1
2
(cos120°cos2A+sin120°sin2A)
=-
1
4
+
1
2
cos(120°-2A)
∵120°-2A∈(0,120°)
∴cos(120°-2A)∈(-
1
2
,1)
∴cosAcosC∈(-
1
2
1
4
),
故选:C.
点评:本题主要考查了两角和与查的余弦函数,三角函数恒等变换的应用.考查了学生分析和推理的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网