题目内容
在一个数列中,如果对任意n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+…+a12=( )
| A、24 | B、28 | C、32 | D、36 |
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:根据“等积数列”的概念,a1=1,a2=2,公积为8,可求得a3,a4,…a12,利用数列的求和公式即可求得答案.
解答:
解:依题意,数列{an}是等积数列,且a1=1,a2=2,公积为8,
∴a1•a2•a3=8,即1×2a3=8,
∴a3=4.
同理可求a4=1,a5=2,a6=4,…
∴{an}是以3为周期的数列,
∴a1=a4=a7=a10=1,
a2=a5=a8=a11=2,
a3=a6=a9=a12=4.
∴a1+a2+a3+…+a12=(1+2+4)×4=28.
故答案为:28.
∴a1•a2•a3=8,即1×2a3=8,
∴a3=4.
同理可求a4=1,a5=2,a6=4,…
∴{an}是以3为周期的数列,
∴a1=a4=a7=a10=1,
a2=a5=a8=a11=2,
a3=a6=a9=a12=4.
∴a1+a2+a3+…+a12=(1+2+4)×4=28.
故答案为:28.
点评:本题考查数列的求和,求得{an}是以3为周期的数列是关键,考查分析观察与运算能力.
练习册系列答案
相关题目
下列命题中,假命题是( )
| A、?x∈R,3x-2>0 |
| B、?x0∈R,tanx0=2 |
| C、?x0∈R,lgx0<2 |
| D、?x∈N*,(x-2)2>0 |
已知cosα=
,α∈(
,2π),则cos(α+
)=( )
| 4 |
| 5 |
| 3π |
| 2 |
| π |
| 4 |
A、
| ||||
B、
| ||||
C、-
| ||||
D、-
|
在△ABC中,a,b,c分别是角A,B,C的对边,满足a=1,A=30°,B=45°,则b=( )
A、
| ||
B、
| ||
| C、2 | ||
| D、3 |
在△ABC中,若三个内角A,B,C成等差数列且A<B<C,则cosAcosC的取值范围是( )
A、(-
| ||||
B、[-
| ||||
C、(-
| ||||
D、(-
|
已知
=1-ni,其中m、n是实数,i是虚数单位,则复数m+ni在复平面内所对应的点在( )
| m |
| 1+i |
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |