题目内容
13.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(m,-1),若$\overrightarrow a∥\overrightarrow b$,则m=-2.分析 根据向量关系的坐标公式进行求解即可.
解答 解:∵$\overrightarrow a$=(2,1),$\overrightarrow b$=(m,-1),
∴若$\overrightarrow a∥\overrightarrow b$,则$\frac{m}{2}=\frac{-1}{1}$,即m=-2,
故答案为:-2
点评 本题主要考查向量平行的坐标运算,根据向量平行的公式是解决本题的关键.
练习册系列答案
相关题目
4.已知集合A={x|lnx≤0},B={x∈R|z=x+i,$|z|≥\frac{{\sqrt{5}}}{2}$,i是虚数单位},A∩B=( )
| A. | $({-∞,-\frac{1}{2}}]∪[{\frac{1}{2},1}]$ | B. | $[{\frac{1}{2},1}]$ | C. | (0,1] | D. | [1,+∞) |
5.设函数f(x)在R上存在导函数f′(x),对于任意的实数x,都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f′(x)<4x,若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是( )
| A. | [-$\frac{1}{2}$,+∞) | B. | [-$\frac{3}{2}$,+∞) | C. | [-1,+∞) | D. | [-2,+∞) |
2.某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:
现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.
| 肥料 原料 | A | B | C |
| 甲 | 4 | 8 | 3 |
| 乙 | 5 | 5 | 10 |
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.