题目内容

若x,y满足
x+y-2≤2
2x-y+2≥0
y≥0
,则z=y-x的最大值为(  )
A、2B、-2C、1D、-1
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答: 解:由z=y-x得y=x+z,
作出不等式组对应的平面区域如图(阴影部分ABC):
平移直线y=x+z由图象可知当直线y=x+z经过点A时,直线y=x+z的截距最大,
此时z也最大,
x+y-2=0
2x-y+2=0
,解得
x=0
y=2
,即A(0,2).
代入目标函数z=y-x,
得z=2-0=2.
故选:A
点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网