题目内容
若x,y满足
,则z=y-x的最大值为( )
|
| A、2 | B、-2 | C、1 | D、-1 |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答:
解:由z=y-x得y=x+z,
作出不等式组对应的平面区域如图(阴影部分ABC):
平移直线y=x+z由图象可知当直线y=x+z经过点A时,直线y=x+z的截距最大,
此时z也最大,
由
,解得
,即A(0,2).
代入目标函数z=y-x,
得z=2-0=2.
故选:A
作出不等式组对应的平面区域如图(阴影部分ABC):
平移直线y=x+z由图象可知当直线y=x+z经过点A时,直线y=x+z的截距最大,
此时z也最大,
由
|
|
代入目标函数z=y-x,
得z=2-0=2.
故选:A
点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.
练习册系列答案
相关题目
方程
=x2-2ex+e2+
(e为自然对数的底)的根的个数是( )
| lnx |
| x |
| 1 |
| 2e |
| A、1 | B、0 | C、2 | D、3 |