题目内容
解方程:
+
=5.
| 1-x |
| x+12 |
考点:根式与分数指数幂的互化及其化简运算
专题:计算题
分析:先求出x的取值范围,通过平方去掉根号,化为一元二次方程,解出即可.
解答:
解:∵1-x≥0,x+12≥0,
∴-12≤x≤1,
∵
+
=5,
∴1-x+x+12+2
=25,
∴
=6,
∴x2+11x+24=0,
解得:x=-3,x=-8.
∴-12≤x≤1,
∵
| 1-x |
| x+12 |
∴1-x+x+12+2
| (1-x)(x+12) |
∴
| (1-x)(x+12) |
∴x2+11x+24=0,
解得:x=-3,x=-8.
点评:本题考查了解方程问题,考查了转化思想,是一道基础题.
练习册系列答案
相关题目
A、
| ||
| B、2 | ||
C、
| ||
| D、4 |
若sinx-sin(
-x)=
,则tanx+
的值是( )
| 3π |
| 2 |
| 2 |
| 1 |
| tan(x-π) |
| A、2 | B、-1 | C、1 | D、2 |
点(1,2)到直线y=2x+1的距离为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、2
|
已知直线a∥平面α,则下列命题是假命题的是( )
| A、a与α内的无数条直线平行 |
| B、a与α内的所有直线都平行 |
| C、a与α内的无数条直线垂直 |
| D、a与α无公共点 |