题目内容
15.已知集合A={x||x-2|<3,x∈Z},B={0,1,2},则集合A∩B=( )| A. | {0,1,2} | B. | {0,1,2,3} | C. | {0,1} | D. | {1,2} |
分析 先求出集合,B,由此利用交集定义能求出集合A∩B.
解答 解:∵集合A={x||x-2|<3,x∈Z}={x|-1<x<5,x∈Z}={0,1,2,3,4},
B={0,1,2},
∴集合A∩B={0,1,2}.
故选:A.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关题目
7.已知空间中的直线m、n和平面α,且m⊥α.则“m⊥n”是“n?α”成立的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
4.要得到函数y=$\sqrt{2}$cos2x的图象,只需将函数y=$\sqrt{2}$sin(4x+$\frac{π}{4}$)的图象上所有点的( )
| A. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平行移动$\frac{π}{8}$个单位长度 | |
| B. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平行移动$\frac{π}{4}$个单位长度 | |
| C. | 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动$\frac{π}{8}$个单位长度 | |
| D. | 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动$\frac{π}{4}$个单位长度 |
19.已知函数f(x)=|x|(1+ax),设关于x的不等式f(x+a)>f(x)对任意x∈R恒成立,则实数a的取值范围是( )
| A. | (-∞,-1)∪(1,+∞) | B. | (-1,0)∪(0,1) | C. | (1,+∞) | D. | (0,1) |