ÌâÄ¿ÄÚÈÝ
13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬Æä×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÒÔÔµãOΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïßx-y+$\sqrt{2}$=0ÏàÇУ®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£®
£¨2£©¹ýµãF2×÷²»ÓëxÖáÖØºÏµÄÖ±Ïß½»ÍÖÔ²ÓÚM£¬NÁ½¸ö²»Í¬µÄµã£¬Çó¡÷0MNÃæ»ýSµÄ×î´óÖµ£®
·ÖÎö £¨1£©Ô²Ðĵ½Ö±Ïßx-y+$\sqrt{2}$=0µÄ¾àÀëd=$\frac{|0-0+\sqrt{2}|}{\sqrt{1+1}}$=1£¬´Ó¶øÈ·¶¨b=1£¬´Ó¶øÇ󷽳̣»
£¨2£©ÉèÖ±ÏßMNµÄ·½³ÌΪx-1=ay£¬´Ó¶øÁªÁ¢·½³Ì»¯¼òµÃ£¨a2+2£©y2+2ay-1=0£¬´Ó¶ø¿ÉµÃy1+y2=-$\frac{2a}{{a}^{2}+2}$£¬y1y2=-$\frac{1}{{a}^{2}+2}$£¬´Ó¶ø»¯¼òµÃ|y1-y2|max=$\sqrt{2}$£¬´Ó¶øÇóÃæ»ýµÄ×î´óÖµ£®
½â´ð
½â£º£¨1£©Ô²Ðĵ½Ö±Ïßx-y+$\sqrt{2}$=0µÄ¾àÀëd=$\frac{|0-0+\sqrt{2}|}{\sqrt{1+1}}$=1£¬
¹Êb=1£¬
ÓÖ¡ße=$\frac{\sqrt{2}}{2}$£¬
¡àc=1£¬a=$\sqrt{2}$£¬
¹ÊÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£®
£¨2£©ÉèÖ±ÏßMNµÄ·½³ÌΪx-1=ay£¬
ÁªÁ¢·½³Ì¿ÉµÃ$\left\{\begin{array}{l}{x=1+ay}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬
£¨a2+2£©y2+2ay-1=0£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
¹Êy1+y2=-$\frac{2a}{{a}^{2}+2}$£¬y1y2=-$\frac{1}{{a}^{2}+2}$£¬
¹Ê£¨y1-y2£©2=£¨y1+y2£©2-4y1y2
=$\frac{4{a}^{2}}{£¨{a}^{2}+2£©^{2}}$+4$\frac{1}{{a}^{2}+2}$
=$\frac{8{a}^{2}+8}{£¨{a}^{2}+2£©^{2}}$=8£¨-$\frac{1}{£¨{a}^{2}+2£©^{2}}$+$\frac{1}{{a}^{2}+2}$£©
=-8£¨$\frac{1}{{a}^{2}+2}$-$\frac{1}{2}$£©2+2£¬
¹Ê|y1-y2|max=$\sqrt{2}$£¬
¶øS=$\frac{1}{2}$|OF2|£¨|y1|+|y2|£©
=$\frac{1}{2}$|OF2||y1-y2|
¡Ü$\frac{1}{2}$•1•$\sqrt{2}$=$\frac{\sqrt{2}}{2}$£®
¹Ê¡÷0MNÃæ»ýSµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁËÊýÐνáºÏµÄ˼ÏëÓ¦Óü°ÍÖÔ²ÓëÖ±ÏßµÄλÖùØÏµÓ¦Óã¬Í¬Ê±¿¼²éÁËѧÉúµÄ»¯¼òÔËËãÄÜÁ¦£®
| A£® | x+2y-5=0 | B£® | x-2y+3=0 | C£® | 2x+y-4=0 | D£® | 2x-y=0 |