题目内容

17.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PA⊥PC,∠ADC=120°,底面ABCD为菱形,G为PC中点,E,F分别为AB,PB上一点,AB=4AE=4$\sqrt{2}$,PB=4PF.
(1)求证:AC⊥DF;
(2)求证:EF∥平面BDG;
(3)求三棱锥B-CEF的体积.

分析 (1)取AB中点H,以D为原点,DH为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能证明AC⊥DF.
(2)连结AC,BD,交于点O,由已知条件推导出EF∥OG,由此能证明EF∥平面BDG.
(3)利用向量法求出F到平面BEC的距离d=3t=3,三棱锥B-CEF的体积VB-CEF=VF-BEC.,由此能求出结果.

解答 证明:(1)取AB中点H,以D为原点,DH为x轴,DC为y轴,DP为z轴,
建立空间直角坐标系,
设P(0,0,4t),t>0,
由已知得A(2$\sqrt{6}$,-2$\sqrt{2}$,0),C(0,4$\sqrt{2}$,0),D(0,0,0),
B(2$\sqrt{6}$,2$\sqrt{2}$,0),F($\frac{\sqrt{6}}{2}$,$\frac{\sqrt{2}}{2}$,3t),
$\overrightarrow{AC}$=(-2$\sqrt{6}$,6$\sqrt{2}$,0),$\overrightarrow{DF}$=($\frac{\sqrt{6}}{2}$,$\frac{\sqrt{2}}{2}$,3t),
∴$\overrightarrow{AC}•\overrightarrow{DF}$=-6+6+0=0,
∴AC⊥DF.
(2)连结AC,BD,交于点O,
∵底面ABCD为菱形,∴O是AC中点,
∵G是PC中点,∴OG∥AP,
∵E,F分别为AB,PB上一点,AB=4AE=4$\sqrt{2}$,PB=4PF,
∴EF∥AP,∴EF∥OG,
∵EF?平面BDG,OG?平面BDG,
∴EF∥平面BDG.
解:(3)$\overrightarrow{PA}$=(2$\sqrt{6}$,2$\sqrt{2}$,-4t),$\overrightarrow{PC}$=(0,4$\sqrt{2}$,-4t),
∵PA⊥PC,∴$\overrightarrow{PA}•\overrightarrow{PC}$=0+16-16t2=0,解得t=1,
∴F到平面BEC的距离d=3t=3,
∵∠ADC=120°,底面ABCD为菱形,AB=4AE=4$\sqrt{2}$,
∴BE=3$\sqrt{2}$,BC=4$\sqrt{2}$,
∴S△BEC=$\frac{1}{2}×3\sqrt{2}×4\sqrt{2}×sin120°$=6$\sqrt{3}$,
∴三棱锥B-CEF的体积VB-CEF=VF-BEC=$\frac{1}{3}×{S}_{△BEC}×d$=6$\sqrt{3}$.

点评 本题考查的知识点是直线与平面平行的证明,考查二面角的平面角及求法,建立空间坐标系,将空间夹角问题转化为向量夹角问题是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网