ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÓÒ½¹µãΪF£¨c£¬0£©µ½Ö±Ïßx=$\frac{{a}^{2}}{c}$µÄ¾àÀëΪ1£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì
£¨¢ò£©²»¾¹ý×ø±êÔµãOµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬ÇÒÏß¶ÎABÖеãÔÚÖ±Ïßy=$\frac{1}{2}$xÉÏ£¬Çó¡÷OABÃæ»ýµÄ×î´óÖµ£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒâÁйØÓÚa£¬cµÄ·½³Ì£¬Çó½âµÃµ½a£¬cµÄÖµ£¬ÔÙÓÉÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©µ±Ö±ÏßABΪxÖáʱ£¬¾¹ýԵ㣬ÓëÌâÒâì¶Ü£¬ÉèÖ±ÏßABΪy=kx+m£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÓÉÏß¶ÎABÖеãÔÚÖ±Ïßy=$\frac{1}{2}$xÉÏÇóµÃk£¬È»ºóÓÉÏÒ³¤¹«Ê½ÇóµÃABµÄ³¤¶È£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽÇóµÃOµ½Ö±ÏßABµÄ¾àÀ룬´úÈëÈý½ÇÐÎÃæ»ý¹«Ê½£¬ÀûÓûù±¾²»µÈʽÇóµÃ¡÷OABÃæ»ýµÄ×î´óÖµ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ$e=\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬$\frac{{a}^{2}}{c}-c=1$£¬
½âµÃ£ºa=$\sqrt{2}$£¬c=1£¬b=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬D£¨x0£¬y0£©£¬µ±Ö±ÏßABΪxÖáʱ£¬¾¹ýԵ㣬ÓëÌâÒâì¶Ü£¬
ÉèÖ±ÏßABΪy=kx+m£¬ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$£¬µÃ£¨1+2k2£©x2+4kmx+2m2-2=0£¬
¡à${x}_{1}+{x}_{2}=\frac{-4km}{1+2{k}^{2}}$£¬${x}_{0}=\frac{-2km}{1+2{k}^{2}}$£¬${y}_{0}=k{x}_{0}+m=\frac{-2{k}^{2}m}{1+2{k}^{2}}+m=\frac{m}{1+2{k}^{2}}$£®
°Ñ£¨x0£¬y0£©´úÈëy=$\frac{1}{2}$xÖеÃ$\frac{-km}{1+2{k}^{2}}=\frac{m}{1+2{k}^{2}}$£¬µÃk=-1£®
´Ëʱ3x2-4mx+2m2-2=0£¬${x}_{1}+{x}_{2}=\frac{4m}{3}$£¬${x}_{1}{x}_{2}=\frac{2{m}^{2}-2}{3}$£®
|AB|=$\sqrt{£¨\frac{4m}{3}£©^{2}-4¡Á£¨\frac{2{m}^{2}-2}{3}£©}=\frac{2\sqrt{2}}{3}\sqrt{3-{m}^{2}}$£¬
Oµ½Ö±ÏßABµÄ¾àÀëd=$\frac{|m|}{\sqrt{1+1}}=\frac{|m|}{\sqrt{2}}$£®
¡àS¡÷OAB=$\frac{1}{2}¡Á\frac{|m|}{\sqrt{2}}¡Á\frac{2\sqrt{2}}{3}\sqrt{3-{m}^{2}}$=$\frac{|m|}{3}\sqrt{3-{m}^{2}}=\frac{1}{3}\sqrt{{m}^{2}£¨3-{m}^{2}£©}$£¬
¡ß0£¼m2£¼3£¬
¡àS¡÷OAB=$\frac{1}{3}\sqrt{{m}^{2}£¨3-{m}^{2}£©}¡Ü\frac{1}{3}[\frac{{m}^{2}+£¨3-{m}^{2}£©}{2}]^{2}=\frac{3}{4}$£¬
µ±ÇÒ½öµ±m2=3-m2£¬¼´m=$¡À\frac{\sqrt{6}}{2}$ʱ£¬¡÷AOBµÄÃæ»ý×î´óֵΪ$\frac{3}{4}$£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | [$\frac{4}{3}$£¬4] | B£® | [$\frac{4}{3}$£¬4£© | C£® | [2£¬4] | D£® | £¨2£¬4] |
| A£® | [-$\sqrt{2}$£¬$\sqrt{2}$] | B£® | [-$\sqrt{2}$£¬$\sqrt{6}$] | C£® | [-$\sqrt{6}$£¬$\sqrt{6}$] | D£® | [-$\sqrt{6}$£¬$\sqrt{2}$] |
| A£® | £¨0£¬1£© | B£® | £¨-¡Þ£¬0£© | C£® | [1£¬+¡Þ£© | D£® | [0£¬1£© |
| A£® | 1 | B£® | 2 | C£® | $\frac{\sqrt{2}}{2}$ | D£® | $\frac{\sqrt{3}}{2}$ |
| A£® | {x|0£¼x£¼2} | B£® | {x|0£¼x£¼1} | C£® | {x|0¡Üx£¼1} | D£® | {x|-1£¼x£¼0} |