ÌâÄ¿ÄÚÈÝ

16£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²OµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£®
£¨¢ñ£©½«Ö±ÏßlÓëÔ²OµÄ·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Ö¤Ã÷Ö±Ïßl¹ý¶¨µãP£¨$\frac{1}{2}$£¬1£©£»
£¨¢ò£©ÉèÖ±ÏßlÓëÔ²OÏཻÓÚA¡¢BÁ½µã£¬ÇóÖ¤£ºµãPµ½A¡¢BÁ½µãµÄ¾àÀëÖ®»ýΪ¶¨Öµ£®

·ÖÎö £¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£¬¼´¿ÉÖ¤Ã÷¾­¹ý¶¨µã£»Ô²OµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬Õ¹¿ª¿ÉµÃ£º${¦Ñ}^{2}=\sqrt{2}¡Á\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È+¦Ñsin¦È£©£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼°Æä¦Ñ2=x2+y2¼´¿ÉµÃ³öÖ±½Ç×ø±ê·½³Ì£®
£¨II£©°ÑÖ±ÏßlµÄ±ê×¼²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{2}{\sqrt{6}}t}\\{y=1+\frac{\sqrt{2}}{\sqrt{6}}t}\end{array}\right.$´úÈë¡ÑOµÄ·½³Ì£ºx2+y2=x+y£¬»¯Îª£º${t}^{2}+\frac{\sqrt{3}}{3}$t-$\frac{1}{4}$=0£¬¿ÉµÃt1t2=-$\frac{1}{4}$£®ÀûÓÃ|PA||PB|=|t1t2|¼´¿ÉµÃ³ö£®

½â´ð £¨I£©½â£ºÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃ£º$x-\frac{1}{2}$=$\sqrt{2}$£¨y-1£©£¬¿ÉÖªÖ±Ïßl¹ý¶¨µãP£¨$\frac{1}{2}$£¬1£©£¬»¯ÎªÒ»°ãʽ£º$2x-2\sqrt{2}y$+2$\sqrt{2}$-1=0£»
Ô²OµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬Õ¹¿ª¿ÉµÃ£º${¦Ñ}^{2}=\sqrt{2}¡Á\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È+¦Ñsin¦È£©£¬»¯Îª£ºx2+y2=x+y£®
£¨II£©Ö¤Ã÷£º°ÑÖ±ÏßlµÄ±ê×¼²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{2}{\sqrt{6}}t}\\{y=1+\frac{\sqrt{2}}{\sqrt{6}}t}\end{array}\right.$´úÈë¡ÑOµÄ·½³Ì£ºx2+y2=x+y£¬»¯Îª£º${t}^{2}+\frac{\sqrt{3}}{3}$t-$\frac{1}{4}$=0£¬
¡àt1t2=-$\frac{1}{4}$£®
¡à|PA||PB|=|t1t2|=$\frac{1}{4}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Óá¢Ô²µÄ·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø